-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathmodel-full.py
150 lines (122 loc) · 4.44 KB
/
model-full.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from __future__ import absolute_import
from __future__ import print_function
import os
import keras.models as models
from keras.layers.core import Layer, Dense, Dropout, Activation, Flatten, Reshape, Merge, Permute
from keras.layers.convolutional import Convolution2D, MaxPooling2D, UpSampling2D, ZeroPadding2D
from keras.layers.normalization import BatchNormalization
from keras import backend as K
import cv2
import numpy as np
import json
np.random.seed(07) # 0bserver07 for reproducibility
img_w = 480
img_h = 360
n_labels = 12
kernel = 3
pad = 1
pool_size = 2
encoding_layers = [
Convolution2D(64, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(64, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
MaxPooling2D(pool_size=(pool_size, pool_size)),
Convolution2D(128, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(128, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
MaxPooling2D(pool_size=(pool_size, pool_size)),
Convolution2D(256, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(256, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(256, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
MaxPooling2D(pool_size=(pool_size, pool_size)),
Convolution2D(512, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(512, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(512, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
MaxPooling2D(pool_size=(pool_size, pool_size)),
Convolution2D(512, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(512, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(512, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
MaxPooling2D(pool_size=(pool_size, pool_size)),
]
decoding_layers = [
UpSampling2D(size=(pool_size,pool_size)),
Convolution2D(512, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(512, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(512, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
UpSampling2D(size=(pool_size,pool_size)),
Convolution2D(512, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(512, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(256, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
UpSampling2D(size=(pool_size,pool_size)),
Convolution2D(256, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(256, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(128, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
UpSampling2D(size=(pool_size,pool_size)),
Convolution2D(128, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(64, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
UpSampling2D(size=(pool_size,pool_size)),
Convolution2D(64, kernel, kernel, border_mode='same'),
BatchNormalization(),
Activation('relu'),
Convolution2D(n_labels, 1, 1, border_mode='valid'),
BatchNormalization(),
]
segnet_basic = models.Sequential()
segnet_basic.add(Layer(input_shape=(3, 360, 480)))
segnet_basic.encoding_layers = encoding_layers
for l in segnet_basic.encoding_layers:
segnet_basic.add(l)
segnet_basic.decoding_layers = decoding_layers
for l in segnet_basic.decoding_layers:
segnet_basic.add(l)
segnet_basic.add(Reshape((n_labels, img_h * img_w), input_shape=(12,img_h, img_w)))
segnet_basic.add(Permute((2, 1)))
segnet_basic.add(Activation('softmax'))
with open('segNet_full_model.json', 'w') as outfile:
outfile.write(json.dumps(json.loads(segnet_basic.to_json()), indent=2))