-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathsubmodules.py
105 lines (81 loc) · 4.5 KB
/
submodules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# -*- coding: UTF-8 -*-
# ---------------------------------------------------------------------------
# Official code of our paper:Bilateral Grid Learning for Stereo Matching Network
# Written by Bin Xu
# ---------------------------------------------------------------------------
from __future__ import print_function
import torch.nn as nn
import math
def convbn_2d_lrelu(in_planes, out_planes, kernel_size, stride, pad, dilation=1, bias=False):
return nn.Sequential(
nn.Conv2d(in_planes, out_planes, kernel_size=(kernel_size, kernel_size),
stride=(stride, stride), padding=(pad, pad), dilation=(dilation, dilation), bias=bias),
nn.BatchNorm2d(out_planes),
nn.LeakyReLU(0.1, inplace=True))
def convbn_2d_Tanh(in_planes, out_planes, kernel_size, stride, pad, dilation=1, bias=False):
return nn.Sequential(
nn.Conv2d(in_planes, out_planes, kernel_size=(kernel_size, kernel_size),
stride=(stride, stride), padding=(pad, pad), dilation=(dilation, dilation), bias=bias),
nn.BatchNorm2d(out_planes),
nn.Tanh())
def deconvbn_2d_lrelu(in_planes, out_planes, kernel_size, stride, pad, dilation=1,bias=False):
return nn.Sequential(
nn.ConvTranspose2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=pad,
dilation=dilation, bias=True),
nn.BatchNorm2d(out_planes),
nn.LeakyReLU(negative_slope=0.1, inplace=True))
def convbn_3d_lrelu(in_planes, out_planes, kernel_size, stride, pad):
return nn.Sequential(nn.Conv3d(in_planes, out_planes, kernel_size=kernel_size, padding=(pad, pad, pad),
stride=(1, stride, stride), bias=False),
nn.BatchNorm3d(out_planes),
nn.LeakyReLU(0.1, inplace=True))
def conv_relu(in_planes, out_planes, kernel_size, stride, pad, bias=True):
return nn.Sequential(nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad, bias=bias),
nn.ReLU(inplace=True))
def convbn(in_planes, out_planes, kernel_size, stride, pad, dilation):
return nn.Sequential(nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
padding=dilation if dilation > 1 else pad, dilation=dilation, bias=False),
nn.BatchNorm2d(out_planes))
def convbn_relu(in_planes, out_planes, kernel_size, stride, pad, dilation):
return nn.Sequential(nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
padding=dilation if dilation > 1 else pad, dilation=dilation, bias=False),
nn.BatchNorm2d(out_planes),
nn.ReLU(inplace=True))
def convbn_transpose_3d(inplanes, outplanes, kernel_size, padding, output_padding, stride, bias):
return nn.Sequential(nn.ConvTranspose3d(inplanes, outplanes, kernel_size, padding=padding,
output_padding=output_padding, stride=stride, bias=bias),
nn.BatchNorm3d(outplanes))
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride, downsample, pad, dilation):
super(BasicBlock, self).__init__()
self.conv1 = convbn_relu(inplanes, planes, 3, stride, pad, dilation)
self.conv2 = convbn(planes, planes, 3, 1, pad, dilation)
self.downsample = downsample
self.stride = stride
def forward(self, x):
out = self.conv1(x)
out = self.conv2(out)
if self.downsample is not None:
x = self.downsample(x)
out += x
return out
class SubModule(nn.Module):
def __init__(self):
super(SubModule, self).__init__()
def weight_init(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.Conv3d):
n = m.kernel_size[0] * m.kernel_size[1] * m.kernel_size[2] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.SyncBatchNorm):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.SyncBatchNorm):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()