forked from mikexcohen/AnalyzingNeuralTimeSeries
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter05.m
136 lines (103 loc) · 4.63 KB
/
chapter05.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
%% Analyzing Neural Time Series Data
% Matlab code for Chapter 5
% Mike X Cohen
%
% This code accompanies the book, titled "Analyzing Neural Time Series Data"
% (MIT Press). Using the code without following the book may lead to confusion,
% incorrect data analyses, and misinterpretations of results.
% Mike X Cohen assumes no responsibility for inappropriate or incorrect use of this code.
%% load sample data
load sampleEEGdata.mat
%% time-locked and non-phase-locked
nTrials = 4;
figure
data = zeros(nTrials,EEG.pnts);
% wavelet... more on this in Chapters 13 and 14
wavetime = -1:1/EEG.srate:1;
n_conv = length(wavetime)+EEG.pnts-1;
waveletfft = fft(exp(2*1i*pi*10.*wavetime) .* exp(-wavetime.^2./(2*(5/(2*pi*10))^2))/10,n_conv);
data10hz = zeros(nTrials,EEG.pnts);
for triali=1:nTrials
% create single trial ERP as sine wave plus noise
data(triali,:) = .15*sin(2*pi*6.*EEG.times/1000 + 2*pi*triali/nTrials-pi) + randn(1,EEG.pnts)/6;
% add non-phase-locked stimulus potential
data(triali,260:360) = data(triali,260:360) + sin(2*pi*10.*EEG.times(260:360)/1000 + 2*pi*triali/nTrials-pi) + randn(1,101)/5;
% convolve with 10Hz wavelet (more on convolution in a few chapters...)
convolution_result_fft = ifft(waveletfft.*fft(data(triali,:),n_conv)) * sqrt(5/(2*pi*10));
convolution_result_fft = convolution_result_fft(floor(length(wavetime)/2)+1:end-floor(length(wavetime)/2));
data10hz(triali,:) = abs(convolution_result_fft)*2;
% plot single trials
subplot(nTrials,3,(triali-1)*3+1)
plot(EEG.times,data(triali,:))
hold on
plot(EEG.times,data10hz(triali,:),'r')
set(gca,'xlim',[-250 850],'ylim',[-2.2 2.2])
end
subplot(nTrials,3,(triali-1)*3+2)
plot(EEG.times,mean(data,1))
hold on
plot(EEG.times,mean(data10hz,1),'r')
set(gca,'xlim',[-250 850],'ylim',[-2.2 2.2])
%% time-locked and phase-locked
nTrials = 4;
figure
data = zeros(nTrials,EEG.pnts);
% wavelet... more on this in Chapters 13 and 14
wavetime = -1:1/EEG.srate:1;
n_conv = length(wavetime)+EEG.pnts-1;
waveletfft = fft(exp(2*1i*pi*10.*wavetime) .* exp(-wavetime.^2./(2*(5/(2*pi*10))^2))/10,n_conv);
data10hz = zeros(nTrials,EEG.pnts);
for triali=1:nTrials
% create single trial ERP
data(triali,:) = .15*sin(2*pi*6.*EEG.times/1000 + 2*pi*triali/nTrials-pi) + randn(1,EEG.pnts)/6;
% add non-phase-locked stimulus potential
data(triali,260:360) = data(triali,260:360) + sin(2*pi*10.*EEG.times(260:360)/1000) + randn(1,101)/5;
% convolve with 10Hz wavelet (more on convolution in a few chapters...)
convolution_result_fft = ifft(waveletfft.*fft(data(triali,:),n_conv)) * sqrt(5/(2*pi*10));
convolution_result_fft = convolution_result_fft(floor(length(wavetime)/2)+1:end-floor(length(wavetime)/2));
data10hz(triali,:) = abs(convolution_result_fft)*2;
% plot single trials
subplot(nTrials,3,(triali-1)*3+1)
plot(EEG.times,data(triali,:))
hold on
plot(EEG.times,data10hz(triali,:),'r')
set(gca,'xlim',[-250 850],'ylim',[-2.2 2.2])
end
subplot(nTrials,3,(triali-1)*3+2)
plot(EEG.times,mean(data,1))
hold on
plot(EEG.times,mean(data10hz,1),'r')
set(gca,'xlim',[-250 850],'ylim',[-2.2 2.2])
%% non-time-locked and phase-locked
nTrials = 4;
figure
data = zeros(nTrials,EEG.pnts);
% wavelet... more on this in Chapters 13 and 14
wavetime = -1:1/EEG.srate:1;
n_conv = length(wavetime)+EEG.pnts-1;
waveletfft = fft(exp(2*1i*pi*10.*wavetime) .* exp(-wavetime.^2./(2*(5/(2*pi*10))^2))/10,n_conv);
data10hz = zeros(nTrials,EEG.pnts);
for triali=1:nTrials
% create single trial ERP
data(triali,:) = .15*sin(2*pi*6.*EEG.times/1000 + 2*pi*triali/nTrials-pi) + randn(1,EEG.pnts)/6;
% add non-phase-locked stimulus potential
eventtime = randperm(80)+240;
eventtime = eventtime(1):eventtime(1)+80;
data(triali,eventtime) = data(triali,eventtime) + sin(2*pi*10.*EEG.times(eventtime)/1000 + 2*pi*triali/nTrials-pi) + randn(1,length(eventtime))/5;
% convolve with 10Hz wavelet (more on convolution in a few chapters...)
convolution_result_fft = ifft(waveletfft.*fft(data(triali,:),n_conv)) * sqrt(5/(2*pi*10));
convolution_result_fft = convolution_result_fft(floor(length(wavetime)/2)+1:end-floor(length(wavetime)/2));
data10hz(triali,:) = abs(convolution_result_fft)*2;
% plot single trials
subplot(nTrials,3,(triali-1)*3+1)
plot(EEG.times,data(triali,:))
hold on
plot(EEG.times,data10hz(triali,:),'r')
set(gca,'xlim',[-250 850],'ylim',[-2.2 2.2])
end
subplot(nTrials,3,(triali-1)*3+2)
plot(EEG.times,mean(data,1))
hold on
plot(EEG.times,mean(data10hz,1),'r')
set(gca,'xlim',[-250 850],'ylim',[-2.2 2.2])
%% end.