-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpipeline.py
389 lines (374 loc) · 14.8 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
from midi2audio import FluidSynth
from music21 import converter, corpus, instrument, midi, note, chord, pitch, stream
import glob
import os
from time import time
from essentia.standard import MonoLoader, TensorflowPredictEffnetDiscogs, TensorflowPredict2D
from chord_extractor.extractors import Chordino
import configparser
import json
import argparse
import numpy as np
import mido
def get_mtg_tags(embeddings,tag_model,tag_json,max_num_tags=5,tag_threshold=0.01):
with open(tag_json, 'r') as json_file:
metadata = json.load(json_file)
predictions = tag_model(embeddings)
mean_act=np.mean(predictions,0)
ind = np.argpartition(mean_act, -max_num_tags)[-max_num_tags:]
tags=[]
confidence_score=[]
for i in ind:
print(metadata['classes'][i] + str(mean_act[i]))
if mean_act[i]>tag_threshold:
tags.append(metadata['classes'][i])
confidence_score.append(mean_act[i])
ind=np.argsort(-np.array(confidence_score))
tags = [tags[i] for i in ind]
confidence_score=np.round((np.array(confidence_score)[ind]).tolist(),4).tolist()
return tags, confidence_score
def process_midi(file):
fs = FluidSynth('/666/midiproject/usr/share/soundfonts/FluidR3_GM.sf2',sample_rate=16000)
#check for duration, do not synthesize files over 15 mins long...
try:
mid = mido.MidiFile(file)
if mid.length>900:
return None
except Exception as e:
print(e)
return None
prefix = os.path.dirname(file)
suffix = os.path.basename(file).split('.')[0]
audio_file=os.path.join(prefix,suffix+'.wav')
fs.midi_to_audio(file, audio_file)
return audio_file
def get_final_inst_list(midi_file_path):
# Dictionary to store instrument durations
instrument_durations = defaultdict(float)
instrument_names=[]
instrument_channels=[]
instrument_change_times=[]
# Parse MIDI file
midi = mido.MidiFile(midi_file_path)
# Iterate through each track
for track in midi.tracks:
# Dictionary to store note-on events for each instrument
active_notes = defaultdict(float)
last_event_time = 0
# Iterate through each event in the track
for msg in track:
# Update the time since the last event
delta_time = msg.time
last_event_time += delta_time
if msg.type=='program_change':
prog=msg.program
chan=msg.channel
# if chan==9 and prog==0:
if chan==9 and not 111<prog<120:
prog=128
if chan in instrument_channels:
instrument_names[instrument_channels.index(chan)]=prog #replace the existing instrument in this channel, no ambiguity!!!
else:
instrument_names.append(prog)
instrument_channels.append(chan)
instrument_change_times.append(msg.time)
# print(msg.time)
# If it's a note-on or note-off event
if msg.type == 'note_on' or msg.type == 'note_off':
# Extract the instrument (channel) and note number
channel = msg.channel
note = msg.note
# Calculate the duration since the last event
duration = last_event_time - active_notes[(channel, note)]
active_notes[(channel, note)] = last_event_time
# Accumulate the duration for this instrument
instrument_durations[channel] += duration
new_dict=sorted(instrument_durations.items(), key=lambda x:x[1],reverse=True)
if len(instrument_names)>20:
print('too many instruments in this one!')
print(midi_file_path)
return [], []
sorted_instrument_list=[]
how_many=min(5,len(set(instrument_names)))
if how_many==0:
return []
add_drums=False
if 9 not in instrument_channels:
for rr in new_dict:
if 9 in rr:
add_drums=True
break
else:
add_drums=False
if add_drums:
instrument_names.append(128)
instrument_channels.append(9)
for i in range(len(new_dict)):
try:
sorted_instrument_list.append(instrument_names[instrument_channels.index(new_dict[i][0])])
except Exception as e:
print(e)
print(midi_file_path)
return sorted_instrument_list
return sorted_instrument_list
def read_midi(path):
mf = midi.MidiFile()
mf.open(path)
mf.read()
mf.close()
return midi.translate.midiFileToStream(mf)
def get_keys(midi):
keys = midi.analyze('keys')
return keys
def get_time_signature(midi):
timeSignature = midi.getTimeSignatures()[0]
return timeSignature
def get_tempo(midifile):
mid = mido.MidiFile(midifile)
try:
for msg in mid:
if msg.type == 'set_tempo':
tempo = mido.tempo2bpm(msg.tempo)
return tempo
except:
return None
return None
def get_duration(file):
try:
mid = mido.MidiFile(file)
return mid.length
except:
return-1
def find_most_repeating_sequence(chords_list, sequence_length):
sequences = [tuple(chords_list[i:i+sequence_length]) for i in range(len(chords_list) - sequence_length + 1)]
delete_index=[]
for i,seqs in enumerate(sequences):
if seqs [0]==seqs[-1]:
delete_index.append(i)
for i in reversed(delete_index):
sequences.pop(i)
sequence_counts = Counter(sequences)
try:
most_common_sequence, count = sequence_counts.most_common(1)[0]
return most_common_sequence, count
except Exception as e:
print(e)
return None, 0
def give_me_final_seq(chords):
sequence_3, count_3 = find_most_repeating_sequence(chords, 3)
sequence_4, count_4 = find_most_repeating_sequence(chords, 4)
sequence_5, count_5 = find_most_repeating_sequence(chords, 5)
total_count=count_3+count_4+count_5
if count_5>0.25*(total_count):
if count_5>0.79*count_4:
return sequence_5, count_5
if count_4>0.3*(total_count):
if count_4>0.79*count_3:
return sequence_4, count_4
if count_3==0:
if count_4==0:
if count_5==0:
return None, 0 # everything is 0
else:
return sequence_5, count_5
else:
return sequence_4, count_4
else:
return sequence_3, count_3
def main():
parser = argparse.ArgumentParser(description="Extract tags from a dataset.")
parser.add_argument(
"--goon", action="store_true",
default=False,help="Resume extraction from the (unfinished) output file, backtracking 5 samples."
)
parser.add_argument(
'--config', type=str,
help='Path to the configuration file'
)
args = parser.parse_args()
config = configparser.ConfigParser()
if args.config:
config.read(args.config)
else:
config.read('config.cfg') # default config file
goon=args.goon
t=time()
genre_model=config['DEFAULT'].get('genre_model',None)
genre_metadata=config['DEFAULT'].get('genre_metadata',None)
mood_model=config['DEFAULT'].get('mood_model',None)
mood_metadata=config['DEFAULT'].get('mood_metadata',None)
emb_model=config['DEFAULT'].get('emb_model',None)
instrumentmap=config['DEFAULT'].get('instrumentmap',None)
embedding_model = TensorflowPredictEffnetDiscogs(graphFilename=emb_model, output="PartitionedCall:1")
genmodel = TensorflowPredict2D(graphFilename=genre_model)
moodmodel = TensorflowPredict2D(graphFilename=mood_model)
chord_estimator = Chordino()
location_file=config['DEFAULT'].get('location_file',None)
output_json_file=config['DEFAULT'].get('output_json_file',None)
file_list=[]
with open(location_file,'r') as jsonfile:
for row in jsonfile:
a=json.loads(row)
file_list.append(a['name'])
if goon:
auxilary_json_file=output_json_file[0:-5]+'aux'+'.json'
current_file_list=[]
print('continuing from where we left off!')
with open(output_json_file, 'r') as jsonfile:
with open(auxilary_json_file,'w') as aux_jsonfile:
for row in jsonfile:
a=json.loads(row)
current_file_list.append(a)
aux_jsonfile.write(json.dumps(a) + '\n')
how_many=len(current_file_list)-5
i=0
with open(output_json_file,'w') as out_json:
if goon:
i=how_many
file_list = file_list[how_many:]
with open(auxilary_json_file, 'r') as aux_json:
hh=0
for row in aux_json:
if hh==how_many:
goon_from_this_file=json.loads(row)
break
else:
a=json.loads(row)
out_json.write(json.dumps(a) + '\n')
hh+=1
for file in file_list:
midi = read_midi(file)
if goon:
if file==goon_from_this_file['name']:
goon=False
else:
continue
#AUDIO PART
audio_file=process_midi(file)
if audio_file is None:
continue
if os.path.exists(audio_file):
audio = MonoLoader(filename=audio_file, sampleRate=16000, resampleQuality=1)()
if len(audio)<48000: #remove samples less than 3 seconds long...
continue
embeddings = embedding_model(audio)
mood_tags, mood_cs = get_mtg_tags(embeddings,moodmodel,mood_metadata,max_num_tags=5,tag_threshold=0.02)
genre_tags, genre_cs = get_mtg_tags(embeddings,genmodel,genre_metadata,max_num_tags=4,tag_threshold=0.05)
chords = chord_estimator.extract(audio_file)
chords_out = [(x.chord, x.timestamp) for x in chords[1:-1]]
#chord summary
ch_name=[]
ch_time=[]
for ch in chords_out:
ch_name.append(ch[0])
ch_time.append(ch[1])
if len(ch_name)<3:
final_seq=ch_name
final_count=1
else:
final_seq, final_count = give_me_final_seq(ch_name)
if final_seq is not None:
if len(final_seq)==4:
if final_seq[0]==final_seq[2] and final_seq[1]==final_seq[3]:
final_seq=final_seq[0:2]
chord_summary=[final_seq,final_count]
os.remove(audio_file) #remove the audio file after synthesis, otherwise it takes too much space!
#MIDI PART
#instruments
try:
fulllist=get_final_inst_list(file)
except Exception as e:
print(e)
print('skipped instruments')
i+=1
print(i)
fulllist=[]
#instrument mapping and summary
with open (instrumentmap,'r') as csvf:
csv_reader=csv.reader(csvf)
data = [row for row in csv_reader]
out_inst_list=[]
for inst in fulllist:
out_inst_list.append(data[inst][3])
#instruments summary - only add one instance of each instrument, then keep top 5
out_inst_sum_list=[]
for rr in out_inst_list:
if rr not in out_inst_sum_list:
out_inst_sum_list.append(rr)
how_many=np.min((5,len(out_inst_sum_list)))
out_inst_sum_list=out_inst_sum_list[0:how_many]
#key
try:
res_key = get_keys(midi)
key = res_key.tonic.name + " " + res_key.mode
except:
key = None
#key postprocessing
if key is None:
key=key
elif '-' in key:
key=key.replace('-','b')
else:
key=key
#time signature
try:
time_sig = get_time_signature(midi)
time_signature = str(time_sig.numerator)+'/'+str(time_sig.denominator)
except:
time_signature = None
#tempo
try:
bpm = get_tempo(file)
except:
bpm = None
#tempo postprocessing
bpm=np.round(bpm)
if np.isnan(bpm):
cap=''
bpm=''
else:
bpm=int(bpm)
dice=np.random.randint(0,2)
if dice==0:
tempo_marks=np.array((40, 60, 70, 90, 110, 140, 160, 210))
tempo_caps=['Grave', 'Largo', 'Adagio', 'Andante', 'Moderato', 'Allegro', 'Vivace', 'Presto', 'Prestissimo']
index=np.sum(bpm>tempo_marks)
tempo_cap=tempo_caps[index]
else:
tempo_marks=np.array((80, 120, 160))
tempo_caps=['Slow', 'Moderate tempo', 'Fast', 'Very fast']
index=np.int(np.sum(bpm>tempo_marks))
tempo_cap=tempo_caps[index]
#duration
try:
duration = get_duration(file)
except:
duration = None
#duration postprocessing
dur_marks=np.array((30, 120, 300))
dur_caps=['Short fragment', 'Short song', 'Song', 'Long piece']
dur=int(np.round(duration))
index=np.int(np.sum(dur>dur_marks))
dur_cap=dur_caps[index]
#sort nicely
new_row={}
new_row['name']=file
new_row['genre']=[genre_tags, genre_cs]
new_row['mood']=[mood_tags, mood_cs]
new_row['key']=key
new_row['time_signature'] = time_signature
new_row['tempo']=[bpm,tempo_cap]
new_row['duration']=[dur,dur_cap]
new_row['chord_summary']=chord_summary
new_row['mapped_instruments_summary']=out_inst_sum_list
new_row['mapped_instruments']=out_inst_list
new_row['sorted_instruments']=fulllist
new_row['chords']=chords_out
out_json.write(json.dumps(new_row) + '\n')
print(i)
i+=1
else:
continue
print(str(time()-t))
if __name__ == "__main__":
main()