-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathUCIExperiments.py
288 lines (242 loc) · 12.3 KB
/
UCIExperiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
from timeit import default_timer as timer
import lib.utils as utils
from datetime import datetime
import yaml
import os
import UCIdatasets
import numpy as np
from models.Normalizers import *
from models.Conditionners import *
from models.NormalizingFlowFactories import buildFCNormalizingFlow
from models.NormalizingFlow import *
import math
import re
def batch_iter(X, batch_size, shuffle=False):
"""
X: feature tensor (shape: num_instances x num_features)
"""
if shuffle:
idxs = torch.randperm(X.shape[0])
else:
idxs = torch.arange(X.shape[0])
if X.is_cuda:
idxs = idxs.cuda()
for batch_idxs in idxs.split(batch_size):
yield X[batch_idxs]
def load_data(name):
if name == 'bsds300':
return UCIdatasets.BSDS300()
elif name == 'power':
return UCIdatasets.POWER()
elif name == 'gas':
return UCIdatasets.GAS()
elif name == 'hepmass':
return UCIdatasets.HEPMASS()
elif name == 'miniboone':
return UCIdatasets.MINIBOONE()
elif name == "digits":
return UCIdatasets.DIGITS()
elif name == "proteins":
return UCIdatasets.PROTEINS()
else:
raise ValueError('Unknown dataset')
cond_types = {"DAG": DAGConditioner, "Coupling": CouplingConditioner, "Autoregressive": AutoregressiveConditioner}
norm_types = {"affine": AffineNormalizer, "monotonic": MonotonicNormalizer}
def train(dataset="POWER", load=True, nb_step_dual=100, nb_steps=20, path="", l1=.1, nb_epoch=10000,
int_net=[200, 200, 200], emb_net=[200, 200, 200], b_size=100, all_args=None, file_number=None, train=True,
solver="CC", nb_flow=1, weight_decay=1e-5, learning_rate=1e-3, cond_type='DAG', norm_type='affine'):
logger = utils.get_logger(logpath=os.path.join(path, 'logs'), filepath=os.path.abspath(__file__))
logger.info(str(all_args))
logger.info("Creating model...")
device = "cpu" if not(torch.cuda.is_available()) else "cuda:0"
if load:
#train = False
file_number = "_" + file_number if file_number is not None else ""
batch_size = b_size
logger.info("Loading data...")
data = load_data(dataset)
data.trn.x = torch.from_numpy(data.trn.x).to(device)
data.val.x = torch.from_numpy(data.val.x).to(device)
data.tst.x = torch.from_numpy(data.tst.x).to(device)
logger.info("Data loaded.")
dim = data.trn.x.shape[1]
conditioner_type = cond_types[cond_type]
conditioner_args = {"in_size": dim, "hidden": emb_net[:-1], "out_size": emb_net[-1]}
if conditioner_type is DAGConditioner:
conditioner_args['l1'] = l1
conditioner_args['gumble_T'] = .5
conditioner_args['nb_epoch_update'] = nb_step_dual
conditioner_args["hot_encoding"] = True
normalizer_type = norm_types[norm_type]
if normalizer_type is MonotonicNormalizer:
normalizer_args = {"integrand_net": int_net, "cond_size": emb_net[-1], "nb_steps": nb_steps,
"solver": solver}
else:
normalizer_args = {}
model = buildFCNormalizingFlow(nb_flow, conditioner_type, conditioner_args, normalizer_type, normalizer_args)
best_valid_loss = np.inf
opt = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
if load:
logger.info("Loading model...")
model.load_state_dict(torch.load(path + '/model%s.pt' % file_number, map_location={"cuda:0": device}))
model.train()
if os.path.isfile(path + '/ADAM%s.pt'):
opt.load_state_dict(torch.load(path + '/ADAM%s.pt' % file_number, map_location={"cuda:0": device}))
if device != "cpu":
for state in opt.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.cuda()
#x = data.trn.x[:20]
#print(x, model(x))
#exit()
for epoch in range(nb_epoch):
ll_tot = 0
start = timer()
# Update constraints
if conditioner_type is DAGConditioner:
with torch.no_grad():
for conditioner in model.getConditioners():
conditioner.constrainA(zero_threshold=0.)
# Training loop
model.to(device)
if train:
for i, cur_x in enumerate(batch_iter(data.trn.x, shuffle=True, batch_size=batch_size)):
if normalizer_type is MonotonicNormalizer:
for normalizer in model.getNormalizers():
normalizer.nb_steps = nb_steps + torch.randint(0, 10, [1])[0].item()
z, jac = model(cur_x)
#print(z.mean(), jac.mean())
loss = model.loss(z, jac)
if math.isnan(loss.item()) or math.isinf(loss.abs().item()):
torch.save(model.state_dict(), path + '/NANmodel.pt')
print("Error NAN in loss")
exit()
ll_tot += loss.detach()
opt.zero_grad()
loss.backward(retain_graph=True)
opt.step()
ll_tot /= i + 1
model.step(epoch, ll_tot)
else:
ll_tot = 0.
# Valid loop
ll_test = 0.
with torch.no_grad():
if normalizer_type is MonotonicNormalizer:
for normalizer in model.getNormalizers():
normalizer.nb_steps = nb_steps + 20
for i, cur_x in enumerate(batch_iter(data.val.x, shuffle=True, batch_size=batch_size)):
z, jac = model(cur_x)
ll = (model.z_log_density(z) + jac)
ll_test += ll.mean().item()
ll_test /= i + 1
end = timer()
dagness = max(model.DAGness())
logger.info("epoch: {:d} - Train loss: {:4f} - Valid log-likelihood: {:4f} - <<DAGness>>: {:4f} - Elapsed time per epoch {:4f} (seconds)".
format(epoch, ll_tot.item(), ll_test, dagness, end-start))
if dagness < 1e-20 and -ll_test < best_valid_loss:
logger.info("------- New best validation loss --------")
torch.save(model.state_dict(), path + '/best_model.pt')
best_valid_loss = -ll_test
# Valid loop
ll_test = 0.
for i, cur_x in enumerate(batch_iter(data.tst.x, shuffle=True, batch_size=batch_size)):
z, jac = model(cur_x)
ll = (model.z_log_density(z) + jac)
ll_test += ll.mean().item()
ll_test /= i + 1
logger.info("epoch: {:d} - Test log-likelihood: {:4f} - <<DAGness>>: {:4f}".format(epoch, ll_test,
dagness))
if epoch % 10 == 0 and conditioner_type is DAGConditioner:
stoch_gate, noise_gate, s_thresh = [], [], []
for conditioner in model.getConditioners():
stoch_gate.append(conditioner.stoch_gate)
noise_gate.append(conditioner.noise_gate)
s_thresh.append(conditioner.s_thresh)
conditioner.stoch_gate = False
conditioner.noise_gate = False
conditioner.s_thresh = True
for threshold in [.95, .5, .1, .01, .0001]:
for conditioner in model.getConditioners():
conditioner.h_thresh = threshold
# Valid loop
ll_test = 0.
for i, cur_x in enumerate(batch_iter(data.val.x, shuffle=True, batch_size=batch_size)):
z, jac = model(cur_x)
ll = (model.z_log_density(z) + jac)
ll_test += ll.mean().item()
ll_test /= i
dagness = max(model.DAGness())
logger.info("epoch: {:d} - Threshold: {:4f} - Valid log-likelihood: {:4f} - <<DAGness>>: {:4f}".
format(epoch, threshold, ll_test, dagness))
for i, conditioner in enumerate(model.getConditioners()):
conditioner.h_thresh = threshold
conditioner.stoch_gate = stoch_gate[i]
conditioner.noise_gate = noise_gate[i]
conditioner.s_thresh = s_thresh[i]
torch.save(model.state_dict(), path + '/model_%d.pt' % epoch)
torch.save(opt.state_dict(), path + '/ADAM_%d.pt' % epoch)
if dataset == "proteins" and conditioner_type is DAGConditioner:
torch.save(model.getConditioners[0].soft_thresholded_A().detach().cpu(), path + '/A_%d.pt' % epoch)
torch.save(model.state_dict(), path + '/model.pt')
torch.save(opt.state_dict(), path + '/ADAM.pt')
import argparse
datasets = ["power", "gas", "bsds300", "miniboone", "hepmass", "digits", "proteins"]
parser = argparse.ArgumentParser(description='')
parser.add_argument("-load_config", default=None, type=str)
# General Parameters
parser.add_argument("-dataset", default=None, choices=datasets, help="Which toy problem ?")
parser.add_argument("-load", default=False, action="store_true", help="Load a model ?")
parser.add_argument("-folder", default="", help="Folder")
parser.add_argument("-f_number", default=None, type=str, help="Number of heating steps.")
parser.add_argument("-test", default=False, action="store_true")
parser.add_argument("-nb_flow", type=int, default=1, help="Number of steps in the flow.")
# Optim Parameters
parser.add_argument("-weight_decay", default=1e-5, type=float, help="Weight decay value")
parser.add_argument("-learning_rate", default=1e-3, type=float, help="Weight decay value")
parser.add_argument("-nb_epoch", default=10000, type=int, help="Number of epochs")
parser.add_argument("-b_size", default=100, type=int, help="Batch size")
# Conditioner Parameters
parser.add_argument("-conditioner", default='DAG', choices=['DAG', 'Coupling', 'Autoregressive'], type=str)
parser.add_argument("-emb_net", default=[100, 100, 100, 10], nargs="+", type=int, help="NN layers of embedding")
# Specific for DAG:
parser.add_argument("-nb_steps_dual", default=100, type=int, help="number of step between updating Acyclicity constraint and sparsity constraint")
parser.add_argument("-l1", default=.2, type=float, help="Maximum weight for l1 regularization")
parser.add_argument("-gumble_T", default=1., type=float, help="Temperature of the gumble distribution.")
# Normalizer Parameters
parser.add_argument("-normalizer", default='affine', choices=['affine', 'monotonic'], type=str)
parser.add_argument("-int_net", default=[100, 100, 100, 100], nargs="+", type=int, help="NN hidden layers of UMNN")
parser.add_argument("-nb_steps", default=20, type=int, help="Number of integration steps.")
parser.add_argument("-solver", default="CC", type=str, help="Which integral solver to use.",
choices=["CC", "CCParallel"])
args = parser.parse_args()
now = datetime.now()
loader = yaml.SafeLoader
loader.add_implicit_resolver(
u'tag:yaml.org,2002:float',
re.compile(u'''^(?:
[-+]?(?:[0-9][0-9_]*)\\.[0-9_]*(?:[eE][-+]?[0-9]+)?
|[-+]?(?:[0-9][0-9_]*)(?:[eE][-+]?[0-9]+)
|\\.[0-9_]+(?:[eE][-+][0-9]+)?
|[-+]?[0-9][0-9_]*(?::[0-5]?[0-9])+\\.[0-9_]*
|[-+]?\\.(?:inf|Inf|INF)
|\\.(?:nan|NaN|NAN))$''', re.X),
list(u'-+0123456789.'))
if args.load_config is not None:
with open("UCIExperimentsConfigurations.yml", 'r') as stream:
try:
configs = yaml.load(stream, Loader=loader)[args.load_config]
for key, val in configs.items():
setattr(args, key, val)
except yaml.YAMLError as exc:
print(exc)
dir_name = args.dataset if args.load_config is None else args.load_config
path = "UCIExperiments/" + dir_name + "/" + now.strftime("%m_%d_%Y_%H_%M_%S") if args.folder == "" else args.folder
if not(os.path.isdir(path)):
os.makedirs(path)
train(args.dataset, load=args.load, path=path, nb_step_dual=args.nb_steps_dual, l1=args.l1, nb_epoch=args.nb_epoch,
int_net=args.int_net, emb_net=args.emb_net, b_size=args.b_size, all_args=args,
nb_steps=args.nb_steps, file_number=args.f_number, solver=args.solver, nb_flow=args.nb_flow,
train=not args.test, weight_decay=args.weight_decay, learning_rate=args.learning_rate,
cond_type=args.conditioner, norm_type=args.normalizer)