Skip to content

Latest commit

 

History

History
54 lines (45 loc) · 2.42 KB

cdnv2.md

File metadata and controls

54 lines (45 loc) · 2.42 KB

CondenseNet V2

  • Paper:CondenseNet V2: Sparse Feature Reactivation for Deep Networks

  • Origin Repo:jianghaojun/CondenseNetV2

  • Code:cdnv2.py

  • Evaluate Transforms:

    # backend: pil
    # input_size: 224x224
    # models: cdnv2_a and cdnv2_b
    transforms = T.Compose([
        T.Resize(256, interpolation='bicubic'),
        T.CenterCrop(224),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])
    
    # backend: pil
    # input_size: 224x224
    # models: cdnv2_c
    transforms = T.Compose([
        T.Resize(256, interpolation='bilinear'),
        T.CenterCrop(224),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])
  • Model Details:

    Model Model Name Params (M) FLOPs (G) Top-1 (%) Top-5 (%) Pretrained Model
    CondenseNetV2-A cdnv2_a 2.0 0.05 64.38 85.24 Download
    CondenseNetV2-B cdnv2_b 3.6 0.15 71.89 90.27 Download
    CondenseNetV2-C cdnv2_c 6.1 0.31 75.87 92.64 Download
  • Citation:

    @misc{yang2021condensenet,
        title={CondenseNet V2: Sparse Feature Reactivation for Deep Networks}, 
        author={Le Yang and Haojun Jiang and Ruojin Cai and Yulin Wang and Shiji Song and Gao Huang and Qi Tian},
        year={2021},
        eprint={2104.04382},
        archivePrefix={arXiv},
        primaryClass={cs.CV}
    }