forked from mesnico/RelationNetworks-CLEVR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
418 lines (343 loc) · 18.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
"""""""""
Pytorch implementation of "A simple neural network module for relational reasoning"
"""""""""
from __future__ import print_function
import argparse
import json
import os
import pickle
import re
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.nn.utils import clip_grad_norm
from torch.utils.data import DataLoader
from torchvision import transforms
from tqdm import tqdm, trange
import utils
import math
from clevr_dataset_connector import ClevrDataset, ClevrDatasetStateDescription
from model import RN
import pdb
def train(data, model, optimizer, epoch, args):
model.train()
avg_loss = 0.0
n_batches = 0
progress_bar = tqdm(data)
for batch_idx, sample_batched in enumerate(progress_bar):
img, qst, label = utils.load_tensor_data(sample_batched, args.cuda, args.invert_questions)
# forward and backward pass
optimizer.zero_grad()
output = model(img, qst)
loss = F.nll_loss(output, label)
loss.backward()
# Gradient Clipping
if args.clip_norm:
clip_grad_norm(model.parameters(), args.clip_norm)
optimizer.step()
# Show progress
progress_bar.set_postfix(dict(loss=loss.data[0]))
avg_loss += loss.data[0]
n_batches += 1
if batch_idx % args.log_interval == 0:
avg_loss /= n_batches
processed = batch_idx * args.batch_size
n_samples = len(data) * args.batch_size
progress = float(processed) / n_samples
print('Train Epoch: {} [{}/{} ({:.0%})] Train loss: {}'.format(
epoch, processed, n_samples, progress, avg_loss))
avg_loss = 0.0
n_batches = 0
def test(data, model, epoch, dictionaries, args):
model.eval()
# accuracy for every class
class_corrects = {}
# for every class, among all the wrong answers, how much are non pertinent
class_invalids = {}
# total number of samples for every class
class_n_samples = {}
# initialization
for c in dictionaries[2].values():
class_corrects[c] = 0
class_invalids[c] = 0
class_n_samples[c] = 0
corrects = 0.0
invalids = 0.0
n_samples = 0
inverted_answ_dict = {v: k for k,v in dictionaries[1].items()}
sorted_classes = sorted(dictionaries[2].items(), key=lambda x: hash(x[1]) if x[1]!='number' else int(inverted_answ_dict[x[0]]))
sorted_classes = [c[0]-1 for c in sorted_classes]
confusion_matrix_target = []
confusion_matrix_pred = []
sorted_labels = sorted(dictionaries[1].items(), key=lambda x: x[1])
sorted_labels = [c[0] for c in sorted_labels]
sorted_labels = [sorted_labels[c] for c in sorted_classes]
avg_loss = 0.0
progress_bar = tqdm(data)
for batch_idx, sample_batched in enumerate(progress_bar):
img, qst, label = utils.load_tensor_data(sample_batched, args.cuda, args.invert_questions, volatile=True)
output = model(img, qst)
pred = output.data.max(1)[1]
loss = F.nll_loss(output, label)
# compute per-class accuracy
pred_class = [dictionaries[2][o+1] for o in pred]
real_class = [dictionaries[2][o+1] for o in label.data]
for idx,rc in enumerate(real_class):
class_corrects[rc] += (pred[idx] == label.data[idx])
class_n_samples[rc] += 1
for pc, rc in zip(pred_class,real_class):
class_invalids[rc] += (pc != rc)
for p,l in zip(pred, label.data):
confusion_matrix_target.append(sorted_classes.index(l))
confusion_matrix_pred.append(sorted_classes.index(p))
# compute global accuracy
corrects += (pred == label.data).sum()
assert corrects == sum(class_corrects.values()), 'Number of correct answers assertion error!'
invalids = sum(class_invalids.values())
n_samples += len(label)
assert n_samples == sum(class_n_samples.values()), 'Number of total answers assertion error!'
avg_loss += loss.data[0]
if batch_idx % args.log_interval == 0:
accuracy = corrects / n_samples
invalids_perc = invalids / n_samples
progress_bar.set_postfix(dict(acc='{:.2%}'.format(accuracy), inv='{:.2%}'.format(invalids_perc)))
avg_loss /= len(data)
invalids_perc = invalids / n_samples
accuracy = corrects / n_samples
print('Test Epoch {}: Accuracy = {:.2%} ({:g}/{}); Invalids = {:.2%} ({:g}/{}); Test loss = {}'.format(epoch, accuracy, corrects, n_samples, invalids_perc, invalids, n_samples, avg_loss))
for v in class_n_samples.keys():
accuracy = 0
invalid = 0
if class_n_samples[v] != 0:
accuracy = class_corrects[v] / class_n_samples[v]
invalid = class_invalids[v] / class_n_samples[v]
print('{} -- acc: {:.2%} ({}/{}); invalid: {:.2%} ({}/{})'.format(v,accuracy,class_corrects[v],class_n_samples[v],invalid,class_invalids[v],class_n_samples[v]))
# dump results on file
filename = os.path.join(args.test_results_dir, 'test.pickle')
dump_object = {
'class_corrects':class_corrects,
'class_invalids':class_invalids,
'class_total_samples':class_n_samples,
'confusion_matrix_target':confusion_matrix_target,
'confusion_matrix_pred':confusion_matrix_pred,
'confusion_matrix_labels':sorted_labels,
'global_accuracy':accuracy
}
pickle.dump(dump_object, open(filename,'wb'))
return avg_loss
def reload_loaders(clevr_dataset_train, clevr_dataset_test, train_bs, test_bs, state_description = False):
if not state_description:
# Use a weighted sampler for training:
#weights = clevr_dataset_train.answer_weights()
#sampler = torch.utils.data.sampler.WeightedRandomSampler(weights, len(weights))
# Initialize Clevr dataset loaders
clevr_train_loader = DataLoader(clevr_dataset_train, batch_size=train_bs,
shuffle=True, num_workers=8, collate_fn=utils.collate_samples_from_pixels)
clevr_test_loader = DataLoader(clevr_dataset_test, batch_size=test_bs,
shuffle=False, num_workers=8, collate_fn=utils.collate_samples_from_pixels)
else:
# Initialize Clevr dataset loaders
clevr_train_loader = DataLoader(clevr_dataset_train, batch_size=train_bs,
shuffle=True, collate_fn=utils.collate_samples_state_description)
clevr_test_loader = DataLoader(clevr_dataset_test, batch_size=test_bs,
shuffle=False, collate_fn=utils.collate_samples_state_description)
return clevr_train_loader, clevr_test_loader
def initialize_dataset(clevr_dir, dictionaries, state_description=True):
if not state_description:
train_transforms = transforms.Compose([transforms.Resize((128, 128)),
transforms.Pad(8),
transforms.RandomCrop((128, 128)),
transforms.RandomRotation(2.8), # .05 rad
transforms.ToTensor()])
test_transforms = transforms.Compose([transforms.Resize((128, 128)),
transforms.ToTensor()])
clevr_dataset_train = ClevrDataset(clevr_dir, True, dictionaries, train_transforms)
clevr_dataset_test = ClevrDataset(clevr_dir, False, dictionaries, test_transforms)
else:
clevr_dataset_train = ClevrDatasetStateDescription(clevr_dir, True, dictionaries)
clevr_dataset_test = ClevrDatasetStateDescription(clevr_dir, False, dictionaries)
return clevr_dataset_train, clevr_dataset_test
def main(args):
#load hyperparameters from configuration file
with open(args.config) as config_file:
hyp = json.load(config_file)['hyperparams'][args.model]
#override configuration dropout
if args.dropout > 0:
hyp['dropout'] = args.dropout
if args.question_injection >= 0:
hyp['question_injection_position'] = args.question_injection
print('Loaded hyperparameters from configuration {}, model: {}: {}'.format(args.config, args.model, hyp))
args.model_dirs = './model_{}_drop{}_bstart{}_bstep{}_bgamma{}_bmax{}_lrstart{}_'+ \
'lrstep{}_lrgamma{}_lrmax{}_invquests-{}_clipnorm{}_glayers{}_qinj{}_fc1{}_fc2{}'
args.model_dirs = args.model_dirs.format(
args.model, hyp['dropout'], args.batch_size, args.bs_step, args.bs_gamma,
args.bs_max, args.lr, args.lr_step, args.lr_gamma, args.lr_max,
args.invert_questions, args.clip_norm, hyp['g_layers'], hyp['question_injection_position'],
hyp['f_fc1'], hyp['f_fc2'])
if not os.path.exists(args.model_dirs):
os.makedirs(args.model_dirs)
#create a file in this folder containing the overall configuration
args_str = str(args)
hyp_str = str(hyp)
all_configuration = args_str+'\n\n'+hyp_str
filename = os.path.join(args.model_dirs,'config.txt')
with open(filename,'w') as config_file:
config_file.write(all_configuration)
args.features_dirs = './features'
args.test_results_dir = './test_results'
if not os.path.exists(args.test_results_dir):
os.makedirs(args.test_results_dir)
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
print('Building word dictionaries from all the words in the dataset...')
dictionaries = utils.build_dictionaries(args.clevr_dir)
print('Word dictionary completed!')
print('Initializing CLEVR dataset...')
clevr_dataset_train, clevr_dataset_test = initialize_dataset(args.clevr_dir, dictionaries, hyp['state_description'])
print('CLEVR dataset initialized!')
# Build the model
args.qdict_size = len(dictionaries[0])
args.adict_size = len(dictionaries[1])
model = RN(args, hyp)
if torch.cuda.device_count() > 1 and args.cuda:
model = torch.nn.DataParallel(model)
model.module.cuda() # call cuda() overridden method
if args.cuda:
model.cuda()
start_epoch = 1
if args.resume:
filename = args.resume
if os.path.isfile(filename):
print('==> loading checkpoint {}'.format(filename))
checkpoint = torch.load(filename)
#removes 'module' from dict entries, pytorch bug #3805
if torch.cuda.device_count() == 1 and any(k.startswith('module.') for k in checkpoint.keys()):
checkpoint = {k.replace('module.',''): v for k,v in checkpoint.items()}
if torch.cuda.device_count() > 1 and not any(k.startswith('module.') for k in checkpoint.keys()):
checkpoint = {'module.'+k: v for k,v in checkpoint.items()}
model.load_state_dict(checkpoint)
print('==> loaded checkpoint {}'.format(filename))
start_epoch = int(re.match(r'.*epoch_(\d+).pth', args.resume).groups()[0]) + 1
if args.conv_transfer_learn:
if os.path.isfile(args.conv_transfer_learn):
# TODO: there may be problems caused by pytorch issue #3805 if using DataParallel
print('==> loading conv layer from {}'.format(args.conv_transfer_learn))
# pretrained dict is the dictionary containing the already trained conv layer
pretrained_dict = torch.load(args.conv_transfer_learn)
if torch.cuda.device_count() == 1:
conv_dict = model.conv.state_dict()
else:
conv_dict = model.module.conv.state_dict()
# filter only the conv layer from the loaded dictionary
conv_pretrained_dict = {k.replace('conv.','',1): v for k, v in pretrained_dict.items() if 'conv.' in k}
# overwrite entries in the existing state dict
conv_dict.update(conv_pretrained_dict)
# load the new state dict
if torch.cuda.device_count() == 1:
model.conv.load_state_dict(conv_dict)
params = model.conv.parameters()
else:
model.module.conv.load_state_dict(conv_dict)
params = model.module.conv.parameters()
# freeze the weights for the convolutional layer by disabling gradient evaluation
# for param in params:
# param.requires_grad = False
print("==> conv layer loaded!")
else:
print('Cannot load file {}'.format(args.conv_transfer_learn))
progress_bar = trange(start_epoch, args.epochs + 1)
if args.test:
# perform a single test
print('Testing epoch {}'.format(start_epoch))
_, clevr_test_loader = reload_loaders(clevr_dataset_train, clevr_dataset_test, args.batch_size, args.test_batch_size, hyp['state_description'])
test(clevr_test_loader, model, start_epoch, dictionaries, args)
else:
bs = args.batch_size
# perform a full training
#TODO: find a better solution for general lr scheduling policies
candidate_lr = args.lr * args.lr_gamma ** (start_epoch-1 // args.lr_step)
lr = candidate_lr if candidate_lr <= args.lr_max else args.lr_max
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=lr, weight_decay=1e-4)
# scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=0.5, min_lr=1e-6, verbose=True)
scheduler = lr_scheduler.StepLR(optimizer, args.lr_step, gamma=args.lr_gamma)
scheduler.last_epoch = start_epoch
print('Training ({} epochs) is starting...'.format(args.epochs))
for epoch in progress_bar:
if(((args.bs_max > 0 and bs < args.bs_max) or args.bs_max < 0 ) and (epoch % args.bs_step == 0 or epoch == start_epoch)):
bs = math.floor(args.batch_size * (args.bs_gamma ** (epoch // args.bs_step)))
if bs > args.bs_max and args.bs_max > 0:
bs = args.bs_max
clevr_train_loader, clevr_test_loader = reload_loaders(clevr_dataset_train, clevr_dataset_test, bs, args.test_batch_size, hyp['state_description'])
#restart optimizer in order to restart learning rate scheduler
#for param_group in optimizer.param_groups:
# param_group['lr'] = args.lr
#scheduler = lr_scheduler.CosineAnnealingLR(optimizer, step, min_lr)
print('Dataset reinitialized with batch size {}'.format(bs))
if((args.lr_max > 0 and scheduler.get_lr()[0]<args.lr_max) or args.lr_max < 0):
scheduler.step()
print('Current learning rate: {}'.format(optimizer.param_groups[0]['lr']))
# TRAIN
progress_bar.set_description('TRAIN')
train(clevr_train_loader, model, optimizer, epoch, args)
# TEST
progress_bar.set_description('TEST')
test(clevr_test_loader, model, epoch, dictionaries, args)
# SAVE MODEL
filename = 'RN_epoch_{:02d}.pth'.format(epoch)
torch.save(model.state_dict(), os.path.join(args.model_dirs, filename))
if __name__ == '__main__':
# Training settings
parser = argparse.ArgumentParser(description='PyTorch Relational-Network CLEVR')
parser.add_argument('--batch-size', type=int, default=640, metavar='N',
help='input batch size for training (default: 640)')
parser.add_argument('--test-batch-size', type=int, default=640,
help='input batch size for training (default: 640)')
parser.add_argument('--epochs', type=int, default=350, metavar='N',
help='number of epochs to train (default: 350)')
parser.add_argument('--lr', type=float, default=0.000005, metavar='LR',
help='learning rate (default: 0.000005)')
parser.add_argument('--clip-norm', type=int, default=50,
help='max norm for gradients; set to 0 to disable gradient clipping (default: 10)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=42, metavar='S',
help='random seed (default: 42)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--resume', type=str,
help='resume from model stored')
parser.add_argument('--clevr-dir', type=str, default='.',
help='base directory of CLEVR dataset')
parser.add_argument('--model', type=str, default='original-fp',
help='which model is used to train the network')
parser.add_argument('--no-invert-questions', action='store_true', default=False,
help='invert the question word indexes for LSTM processing')
parser.add_argument('--test', action='store_true', default=False,
help='perform only a single test. To use with --resume')
parser.add_argument('--conv-transfer-learn', type=str,
help='use convolutional layer from another training')
parser.add_argument('--lr-max', type=float, default=0.0005,
help='max learning rate')
parser.add_argument('--lr-gamma', type=float, default=2,
help='increasing rate for the learning rate. 1 to keep LR constant.')
parser.add_argument('--lr-step', type=int, default=20,
help='number of epochs before lr update')
parser.add_argument('--bs-max', type=int, default=-1,
help='max batch-size')
parser.add_argument('--bs-gamma', type=float, default=1,
help='increasing rate for the batch size. 1 to keep batch-size constant.')
parser.add_argument('--bs-step', type=int, default=20,
help='number of epochs before batch-size update')
parser.add_argument('--dropout', type=float, default=-1,
help='dropout rate. -1 to use value from configuration')
parser.add_argument('--config', type=str, default='config.json',
help='configuration file for hyperparameters loading')
parser.add_argument('--question-injection', type=int, default=-1,
help='At which stage of g function the question should be inserted (0 to insert at the beginning, as specified in DeepMind model, -1 to use configuration value)')
args = parser.parse_args()
args.invert_questions = not args.no_invert_questions
main(args)