-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbatchnorm1d.py
195 lines (142 loc) · 6.29 KB
/
batchnorm1d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from typing import Literal, Union
import numpy as np
import neunet
from neunet.autograd import Tensor
from neunet.nn.modules import Module
from neunet.nn.parameter import Parameter
class _BatchNorm1dTensor(Tensor): # tensor for static backpropagation
def __init__(self, data, args, op, device):
super().__init__(data, args, op, device=device)
def grad_fn(X: Tensor, weight: Tensor, bias: Tensor, X_centered, stddev_inv, affine, grad):
# The method of calculating the derivative is similar to BatchNorm.
# https://chrisyeh96.github.io/2017/08/28/deriving-batchnorm-backprop.html
X_hat = X_centered * stddev_inv
N = X.data.shape[0]
weight_data = weight.data if affine else 1
grad_X = (
(1 / N)
* weight_data
* stddev_inv
* (
N * grad
- X.xp.sum(grad, axis=0)
- X_centered * X.xp.power(stddev_inv, 2) * X.xp.sum(grad * X_centered, axis=0)
)
)
if affine:
grad_weight = X.xp.sum(grad * X_hat, axis=0, keepdims=True)
grad_bias = X.xp.sum(grad, axis=0, keepdims=True)
X.apply_grad(grad_X)
if affine:
weight.apply_grad(grad_weight)
bias.apply_grad(grad_bias)
self.grad_fn = grad_fn
class BatchNorm1d(Module): # layer with static backpropagation
def __init__(self, num_features: int, eps: float=1e-5, momentum: float=0.1, affine: bool=True, device: Literal["cpu", "cuda"] = "cpu"):
self.num_features = num_features
self.eps = eps
self.momentum = momentum
self.affine = affine
self.running_mean = Parameter(neunet.tensor(np.zeros((1, num_features)), dtype=np.float32), requires_grad=False)
self.running_var = Parameter(neunet.tensor(np.ones((1, num_features)), dtype=np.float32), requires_grad=False)
if affine:
self.weight: Union[Tensor, None] = Parameter(neunet.tensor(np.ones((1, num_features)), dtype=np.float32))
self.bias: Union[Tensor, None] = Parameter(neunet.tensor(np.zeros((1, num_features)), dtype=np.float32))
else:
self.weight = None
self.bias = None
self.training = True
self.to(device)
def forward(self, X: Tensor) -> Tensor:
if not isinstance(X, Tensor):
raise TypeError("Input must be a tensor")
if X.device != self.device:
raise ValueError("Tensors must be on the same device")
if self.training:
mean = self.xp.mean(X.data, axis=0, keepdims=True)
var = self.xp.var(X.data, axis=0, keepdims=True)
self.running_mean.data = (
self.momentum * self.running_mean.data + (1 - self.momentum) * mean
)
self.running_var.data = (
self.momentum * self.running_var.data + (1 - self.momentum) * var
)
else:
mean = self.running_mean.data
var = self.running_var.data
X_centered = X.data - mean
stddev_inv = 1 / self.xp.sqrt(var + self.eps)
O = X_centered * stddev_inv
if self.affine:
O = self.weight.data * O + self.bias.data # type: ignore
return _BatchNorm1dTensor(
O,
(X, self.weight, self.bias, X_centered, stddev_inv, self.affine),
"batchnorm",
device=self.device,
)
def __call__(self, X):
return self.forward(X)
def train(self, mode=True):
self.training = mode
def eval(self):
self.training = False
# x_arr = self.xp.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9], [1.0, 1.1, 1.2], [1.3, 1.4, 1.5]])
# x_arr = self.xp.random.rand(5, 3)
# x = Tensor(x_arr)
# bn = BatchNorm1d(3)
# bn.train = True
# y = bn(x)
# print(f"y: {y.data}")
# y.backward(self.xp.ones_like(y.data))
# x_grad = x.grad
# print(x.grad)
# print(bn.weight.grad)
# print(bn.bias.grad)
# class BatchNorm1d(): #layer with dynamic backpropagation
# def __init__(self, num_features, eps = 1e-5, momentum = 0.1, affine = True):
# self.num_features = num_features
# self.eps = eps
# self.momentum = momentum
# self.affine = affine
# self.running_mean = Tensor(self.xp.zeros((1, num_features)), requires_grad = False, dtype=self.xp.float32)
# self.running_var = Tensor(self.xp.ones((1, num_features)), requires_grad = False, dtype=self.xp.float32)
# if affine:
# self.weight = Tensor(self.xp.ones((1, num_features)), dtype=self.xp.float32)
# self.bias = Tensor(self.xp.zeros((1, num_features)), dtype=self.xp.float32)
# else:
# self.weight = None
# self.bias = None
# self.training = True
# def forward(self, X):
# if self.training:
# mean = X.mean(axis = 0)#.reshape(1, -1)
# var = X.var(axis = 0)#.reshape(1, -1)
# self.running_mean = self.momentum * self.running_mean + (1.0 - self.momentum) * mean.data #BUG overflow memory when use * between non grad tensor and grad tensor, that's why I use data
# self.running_var = self.momentum * self.running_var + (1.0 - self.momentum) * var.data
# else:
# mean = self.running_mean
# var = self.running_var
# X_centered = (X - mean) #errro
# stddev_inv = 1 / Tensor.sqrt(var + self.eps)
# O = X_centered * stddev_inv
# if self.affine:
# O = self.weight * O + self.bias
# return O
# def __call__(self, X):
# return self.forward(X)
# def train(self, mode = True):
# self.training = mode
# def eval(self):
# self.training = False
# # x = self.xp.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9], [1.0, 1.1, 1.2], [1.3, 1.4, 1.5]])
# x = Tensor(x_arr)
# bn = BatchNorm1d(3)
# bn.train = True
# y = bn(x)
# print(f"y: {y.data}")
# y.backward(self.xp.ones_like(y.data))
# print(x.grad)
# print(bn.weight.grad)
# print(bn.bias.grad)
# print(self.xp.allclose(x.grad, x_grad))