-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathencoder_layer.py
49 lines (35 loc) · 2.21 KB
/
encoder_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from transformer.layers.base.dropout import Dropout
from transformer.layers.combined.self_attention import MultiHeadAttention
from transformer.layers.combined.positionwise_feed_forward import PositionwiseFeedforward
from transformer.layers.base.layer_norm import LayerNormalization
class EncoderLayer:
def __init__(self, d_model, heads_num, d_ff, dropout, data_type):
super(EncoderLayer, self).__init__()
self.self_attention_norm = LayerNormalization(d_model, epsilon=1e-6, data_type=data_type)
self.ff_layer_norm = LayerNormalization(d_model, epsilon=1e-6, data_type=data_type)
self.self_attention = MultiHeadAttention(d_model, heads_num, dropout, data_type)
self.position_wise_feed_forward = PositionwiseFeedforward(d_model, d_ff, dropout)
self.dropout = Dropout(dropout, data_type)
def forward(self, src, src_mask, training):
_src, _ = self.self_attention.forward(src, src, src, src_mask, training)
src = self.self_attention_norm.forward(src + self.dropout.forward(_src, training))
_src = self.position_wise_feed_forward.forward(src, training)
src = self.ff_layer_norm.forward(src + self.dropout.forward(_src, training))
return src
def backward(self, error):
error = self.ff_layer_norm.backward(error)
_error = self.position_wise_feed_forward.backward(self.dropout.backward(error))
error = self.self_attention_norm.backward(error + _error)
_error, _error2, _error3 = self.self_attention.backward(self.dropout.backward(error))
return _error +_error2 +_error3 + error
def set_optimizer(self, optimizer):
self.self_attention_norm.set_optimizer(optimizer)
self.ff_layer_norm.set_optimizer(optimizer)
self.self_attention.set_optimizer(optimizer)
self.position_wise_feed_forward.set_optimizer(optimizer)
def update_weights(self, layer_num):
layer_num = self.self_attention_norm.update_weights(layer_num)
layer_num = self.ff_layer_norm.update_weights(layer_num)
layer_num = self.self_attention.update_weights(layer_num)
layer_num = self.position_wise_feed_forward.update_weights(layer_num)
return layer_num