-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpython.py
96 lines (76 loc) · 1.63 KB
/
python.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#planet with Jupiter
import numpy as np
import matplotlib.pyplot as plt
#constants
G=6.6743e-11
AU=149.597871e9 # 1 astronomical unit (AU) is the mean distance between
sun and Earth
AU1=150.8e9
dJ=5.203*AU
mj=5.97219e24
mJ=1.899e27
M=1.9891e30
day=86400;
year=31556926;
v0=AU*2*np.pi/year;
#Jupiter
v0J=dJ*2*np.pi/(11.86*year);
L=50000
x0=AU1;
y0=0;
u0=0;
x=np.zeros(365*L, dtype=float);
y=np.zeros(365*L, dtype=float);
x[0]=x0;
y[0]=y0;
u=u0;
v=v0;
x0J=dJ;
y0J=0;
u0J=0;
xJ=np.zeros(365*L, dtype=float);
yJ=np.zeros(365*L, dtype=float);
xJ[0]=x0J;
yJ[0]=y0J;
uJ=u0J;
vJ=v0J;
for i in range(1,365*L):
if i % 36500==0:
print(i/365)
x[i]=x[i-1]+day*u;
y[i]=y[i-1]+day*v;
xJ[i]=xJ[i-1]+day*uJ;
yJ[i]=yJ[i-1]+day*vJ;
axS=-G*M/(abs(x[i]**2+y[i]**2)**[3/2])*x[i];
ayS=-G*M/(abs(x[i]**2+y[i]**2)**[3/2])*y[i];
dxJ=x[i]-xJ[i];
dyJ=y[i]-yJ[i];
axEJ=-G*mJ/(abs(dxJ**2+dyJ**2)**[3/2])*dxJ;
ayEJ=-G*mJ/(abs(dxJ**2+dyJ**2)**[3/2])*dyJ;
ax=axS+axEJ;
ay=ayS+ayEJ;
u=u+ax*day;
v=v+ay*day;
axJ=-G*M/(abs(xJ[i]**2+yJ[i]**2)**[3/2])*xJ[i];
ayJ=-G*M/(abs(xJ[i]**2+yJ[i]**2)**[3/2])*yJ[i];
uJ=uJ+axJ*day;
vJ=vJ+ayJ*day;
rj=(x**2+y**2)**.5
l=1000;
e=np.zeros(int(L/l), dtype=float);
for i in range(0,int(L/l)):
win=range(i*l*365,(i+1)*l*365)
print((win))
a=max(rj[win])
b=min(rj[win])
print(a,b)
e[i]=1-2/(a/b+1)
fig=plt.figure(1,figsize=(12,5))
ax=fig.add_subplot(1,2,1)
ax.plot(x,y)
ax.plot(xJ,yJ)
ax.plot (0,0,'o')
ax=fig.add_subplot(1,2,2)
ax.plot(range(0,int(L/l)),e)
plt.savefig('../Figures/planet_earthJupiter.png', dpi=100,
bbox_inches='tight')