-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_single_prediction.py
30 lines (25 loc) · 1.33 KB
/
main_single_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from src import fastqc_extract, data_preparation, feature_engineering, ml_model
import sys
def main(fastq_file, model_dir, exports_dir, organism):
if organism not in ['Ecoli', 'Efcm', 'Sau']: #replace with dynamic list of available models
organism = 'complete_data'
ngs_reads = fastqc_extract.import_all_reads(fastq_file, exports_dir, force_reimport=False, include_metadata=False, single_file=True)
filenames = ngs_reads.index
ngs_reads = data_preparation.prepare_fastqc_data(ngs_reads)
ngs_reads = feature_engineering.apply_feature_engineering(ngs_reads, exports_dir, force_reimport=True)
pred = ml_model.predict_evaluation(ngs_reads, model_dir+'/model_rf_'+organism+'.pkl')
with open(exports_dir+'/predictions.txt', 'w') as f:
for id, prediction in enumerate(pred):
f.write(filenames[id]+': ')
if prediction == 0:
print('ugly')
f.write('ugly\n')
elif prediction == 1:
print('good')
f.write('good\n')
if __name__ == "__main__":
fastq_file = sys.argv[1] #'test_data/all/180525-18-3598-UW18720_S3_L001_R1_001.fastq.gz'
model_dir = sys.argv[2] #'models'
exports_dir = sys.argv[3] #'exports_evaluation_single'
organism = sys.argv[4] #complete_data
main(fastq_file, model_dir, exports_dir, organism)