-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathb3SoundSource.cpp
233 lines (201 loc) · 5.21 KB
/
b3SoundSource.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#include "b3SoundSource.h"
#define MY2PI (2. * 3.14159265)
#include <math.h>
#include "Bullet3Common/b3FileUtils.h"
#include "b3ReadWavFile.h"
#include "b3ADSR.h"
#include "b3Sound_C_Api.h"
struct b3SoundOscillator
{
int m_type;
double m_frequency;
double m_amplitude;
double m_phase;
b3WavTicker m_wavTicker;
double sampleSineWaveForm(double sampleRate)
{
while (m_phase >= MY2PI)
m_phase -= MY2PI;
double z = sinf(m_phase);
double sample = m_amplitude * z;
m_phase += MY2PI * (1. / sampleRate) * m_frequency;
return sample;
}
double sampleSawWaveForm(double sampleRate)
{
while (m_phase >= MY2PI)
m_phase -= MY2PI;
double z = 2. * (m_phase) / MY2PI - 1.;
double sample = m_amplitude * z;
m_phase += MY2PI * (1. / sampleRate) * m_frequency;
return sample;
}
void reset()
{
m_phase = 0;
}
b3SoundOscillator()
: m_type(0),
m_frequency(442.),
m_amplitude(1),
m_phase(0)
{
}
};
#define MAX_OSCILLATORS 2
struct b3SoundSourceInternalData
{
b3SoundOscillator m_oscillators[MAX_OSCILLATORS];
b3ADSR m_envelope;
b3ReadWavFile* m_wavFilePtr;
b3SoundSourceInternalData()
: m_wavFilePtr(0)
{
}
};
b3SoundSource::b3SoundSource()
{
m_data = new b3SoundSourceInternalData();
}
b3SoundSource::~b3SoundSource()
{
delete m_data;
}
void b3SoundSource::setADSR(double attack, double decay, double sustain, double release)
{
m_data->m_envelope.setValues(attack, decay, sustain, release);
}
bool b3SoundSource::computeSamples(double* sampleBuffer, int numSamples, double sampleRate)
{
double* outputSamples = sampleBuffer;
int numActive = 0;
for (int i = 0; i < numSamples; i++)
{
double samples[MAX_OSCILLATORS] = {0};
double env = m_data->m_envelope.tick();
if (env)
{
for (int osc = 0; osc < MAX_OSCILLATORS; osc++)
{
if (m_data->m_oscillators[osc].m_type == 0)
{
samples[osc] += env * m_data->m_oscillators[osc].sampleSineWaveForm(sampleRate);
numActive++;
}
if (m_data->m_oscillators[osc].m_type == 1)
{
samples[osc] += env * m_data->m_oscillators[osc].sampleSawWaveForm(sampleRate);
numActive++;
}
if (m_data->m_oscillators[osc].m_type == 128)
{
int frame = 0;
double data = env * m_data->m_oscillators[osc].m_amplitude * m_data->m_wavFilePtr->tick(frame, &m_data->m_oscillators[osc].m_wavTicker);
samples[osc] += data;
numActive++;
}
}
}
else
{
for (int osc = 0; osc < MAX_OSCILLATORS; osc++)
{
if (m_data->m_oscillators[osc].m_type == 128)
{
m_data->m_oscillators[osc].m_wavTicker.finished_ = true;
}
}
}
//sample *= 1./double(MAX_OSCILLATORS);
double sampleLeft = samples[0];
double sampleRight = samples[1];
if (sampleLeft != sampleRight)
{
}
*outputSamples++ = sampleRight;
*outputSamples++ = sampleLeft;
}
/* if (m_data->m_flags & looping)
{
for (int osc=0;osc<MAX_OSCILLATORS;osc++)
{
if (m_data->m_oscillators[osc].m_waveIn.isFinished())
m_data->m_oscillators[osc].m_waveIn.reset();
}
}
*/
return numActive > 0;
// return false;
}
int b3SoundSource::getNumOscillators() const
{
return MAX_OSCILLATORS;
}
void b3SoundSource::setOscillatorType(int oscillatorIndex, int type)
{
m_data->m_oscillators[oscillatorIndex].m_type = type;
}
void b3SoundSource::setOscillatorFrequency(int oscillatorIndex, double frequency)
{
m_data->m_oscillators[oscillatorIndex].m_frequency = frequency;
}
void b3SoundSource::setOscillatorAmplitude(int oscillatorIndex, double amplitude)
{
m_data->m_oscillators[oscillatorIndex].m_amplitude = amplitude;
}
void b3SoundSource::setOscillatorPhase(int oscillatorIndex, double phase)
{
m_data->m_oscillators[oscillatorIndex].m_phase = phase;
}
bool b3SoundSource::isAvailable() const
{
//available if ADSR is idle and wavticker is finished
return m_data->m_envelope.isIdle();
}
void b3SoundSource::startSound(bool autoKeyOff)
{
if (m_data->m_envelope.isIdle())
{
for (int osc = 0; osc < MAX_OSCILLATORS; osc++)
{
m_data->m_oscillators[osc].reset();
if (m_data->m_oscillators[osc].m_type == B3_SOUND_SOURCE_WAV_FILE) // .m_wavTicker.finished_)
{
//test reverse playback of wav
//m_data->m_oscillators[osc].m_wavTicker.rate_ *= -1;
if (m_data->m_oscillators[osc].m_wavTicker.rate_ < 0)
{
m_data->m_oscillators[osc].m_wavTicker.time_ = m_data->m_wavFilePtr->getNumFrames() - 1.;
}
else
{
m_data->m_oscillators[osc].m_wavTicker.time_ = 0.f;
}
m_data->m_oscillators[osc].m_wavTicker.finished_ = false;
}
}
}
m_data->m_envelope.keyOn(autoKeyOff);
}
void b3SoundSource::stopSound()
{
m_data->m_envelope.keyOff();
}
bool b3SoundSource::setWavFile(int oscillatorIndex, b3ReadWavFile* wavFilePtr, int sampleRate)
{
{
m_data->m_wavFilePtr = wavFilePtr;
m_data->m_oscillators[oscillatorIndex].m_wavTicker = m_data->m_wavFilePtr->createWavTicker(sampleRate);
// waveIn.openFile(resourcePath);
double rate = 1.0;
// rate = waveIn.getFileRate() / stkSampleRate;
// waveIn.setRate( rate );
// waveIn.ignoreSampleRateChange();
// Find out how many channels we have.
// int channels = waveIn.channelsOut();
// m_data->m_oscillators[oscillatorIndex].m_frames.resize( 1, channels );
m_data->m_oscillators[oscillatorIndex].m_type = 128;
return true;
}
return false;
}