-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGrassMann_Fold_Total_Cleaning.m
83 lines (69 loc) · 2.1 KB
/
GrassMann_Fold_Total_Cleaning.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
clc;clear;close all
warning off
addpath('./src')
addpath('./Evaluation')
%% Load Data
n=96 % Main-Features 1)colon=19 2) LSCC=60 3) KRCCC=4 4)GBM=5 5)BIC=38
%load Gene
%load matlab1
%load matlab2
%load matlab3
%load label
%load Methy
%load Mirna
[BRCAGE, BRCAMETH, BRCAMIR, SUR]=BRCA;
%% Normalize data
%[I1,I2,I3, Label] = Data_Simulation(0.1,1,1);
% name = 'synthetic1';
%[t1] = Standard_Normalization(I1');
%[t2] = Standard_Normalization(I2');
%[t3] = Standard_Normalization(I3');
%clear I1 I2 I3
% Gene
%[X1,X2,X3, Label] = Data_Simulation(0.2,2,1);
% name = 'synthetic1';
% X1 = Standard_Normalization(X1');
%X2 = Standard_Normalization(X2');
%% Z-score and PCA
%[I1,C1] = pca_whit(In1',m);
[I1] = pca_whit(BRCAGE',n);
% Methy
%[I2,C2] = pca_whit(In2',m);
[I2] = pca_whit(BRCAMETH',n);
% Mirna
%[I3,C3] = pca_whit(In3',m);
[I3] = pca_whit(BRCAMIR',n);
%% construct the graphs for each data type
options = [];
options.NeighborMode = 'KNN';
options.k = 30;
options.WeightMode = 'HeatKernel';
options.t = 100;
%% Construct W
W1 = full(constructW(I1, options));
W2 = full(constructW(I2, options));
W3 = full(constructW(I3,options));
W_Total=cat(3,W1,W2,W3);
%% Clustering % set the number of clusters
%for K=5
%[idx_COMBINE,Vk, Lnew] = sc_ml(W_Total, K, 0.3);
%Tdisp('Clustering = ')
%disp(K)
%Wx=Vk*Vk';
%outs = SpectralClustering(Wx,K);
%ConcordanceMatrix = Concordance_Network_NMI({Wx,W1,W2,W3},K)
%displayimagesc(ConcordanceMatrix)
%title(['Concordance Matrix at K = ',num2str(K)])
%displayClusters(Wx,outs)
%title(['K = ',num2str(K)])
%[K1, K2, K12,K22] = Estimate_Number_of_Clusters_given_graph(Wx, [1 5:5:15]);
%fprintf('The best number of clusters according to eigengap is %d\n', K1);
%fprintf('The best number of clusters according to rotation cost is %d\n', K2);
%disp('*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\')
%end
K = 5;
[idx_COMBINE,Vk, Lnew] = sc_ml(W_Total, K, 0.5);
displayClusters(Vk*Vk',idx_COMBINE);
%[nmi_value,ACC,f,p,r,Purity,AR,RI,MI,HI,MIhat]= Cluster_Evaluation(idx_COMBINE,Label)
%ALI=1;
%