-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmodel.py
221 lines (162 loc) · 6.82 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# -*- coding: utf-8 -*-
"""
Created on Wed Feb 17 22:09:44 2021
@author: angelou
"""
import os
import cv2
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt
from keras import initializers
from keras.layers import SpatialDropout2D,Input, Conv2D, MaxPooling2D, Conv2DTranspose, concatenate,AveragePooling2D, UpSampling2D, BatchNormalization, Activation, add,Dropout,Permute,ZeroPadding2D,Add, Reshape
from keras.models import Model, model_from_json
from keras.optimizers import Adam
from keras.layers.advanced_activations import ELU, LeakyReLU, ReLU, PReLU
from keras.utils.vis_utils import plot_model
from keras import backend as K
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from keras import applications, optimizers, callbacks
import matplotlib
import keras
import tensorflow as tf
from keras.layers import *
def conv2d_bn(x, filters, num_row, num_col, padding='same', strides=(1, 1), activation='relu', name=None):
'''
2D Convolutional layers
Arguments:
x {keras layer} -- input layer
filters {int} -- number of filters
num_row {int} -- number of rows in filters
num_col {int} -- number of columns in filters
Keyword Arguments:
padding {str} -- mode of padding (default: {'same'})
strides {tuple} -- stride of convolution operation (default: {(1, 1)})
activation {str} -- activation function (default: {'relu'})
name {str} -- name of the layer (default: {None})
Returns:
[keras layer] -- [output layer]
'''
x = Conv2D(filters, (num_row, num_col), strides=strides, padding=padding, use_bias=False)(x)
x = BatchNormalization(axis=3, scale=False)(x)
if(activation == None):
return x
x = Activation(activation, name=name)(x)
return x
def trans_conv2d_bn(x, filters, num_row, num_col, padding='same', strides=(2, 2), name=None):
'''
2D Transposed Convolutional layers
Arguments:
x {keras layer} -- input layer
filters {int} -- number of filters
num_row {int} -- number of rows in filters
num_col {int} -- number of columns in filters
Keyword Arguments:
padding {str} -- mode of padding (default: {'same'})
strides {tuple} -- stride of convolution operation (default: {(2, 2)})
name {str} -- name of the layer (default: {None})
Returns:
[keras layer] -- [output layer]
'''
x = Conv2DTranspose(filters, (num_row, num_col), strides=strides, padding=padding)(x)
x = BatchNormalization(axis=3, scale=False)(x)
return x
def DCBlock(U, inp, alpha = 1.67):
'''
DC Block
Arguments:
U {int} -- Number of filters in a corrsponding UNet stage
inp {keras layer} -- input layer
Returns:
[keras layer] -- [output layer]
'''
W = alpha * U
#shortcut = inp
#shortcut = conv2d_bn(shortcut, int(W*0.167) + int(W*0.333) +
# int(W*0.5), 1, 1, activation=None, padding='same')
conv3x3_1 = conv2d_bn(inp, int(W*0.167), 3, 3,
activation='relu', padding='same')
conv5x5_1 = conv2d_bn(conv3x3_1, int(W*0.333), 3, 3,
activation='relu', padding='same')
conv7x7_1 = conv2d_bn(conv5x5_1, int(W*0.5), 3, 3,
activation='relu', padding='same')
out1 = concatenate([conv3x3_1, conv5x5_1, conv7x7_1], axis=3)
out1 = BatchNormalization(axis=3)(out1)
conv3x3_2 = conv2d_bn(inp, int(W*0.167), 3, 3,
activation='relu', padding='same')
conv5x5_2 = conv2d_bn(conv3x3_2, int(W*0.333), 3, 3,
activation='relu', padding='same')
conv7x7_2 = conv2d_bn(conv5x5_2, int(W*0.5), 3, 3,
activation='relu', padding='same')
out2 = concatenate([conv3x3_2, conv5x5_2, conv7x7_2], axis=3)
out2 = BatchNormalization(axis=3)(out2)
out = add([out1, out2])
out = Activation('relu')(out)
out = BatchNormalization(axis=3)(out)
return out
def ResPath(filters, length, inp):
'''
ResPath
Arguments:
filters {int} -- [description]
length {int} -- length of ResPath
inp {keras layer} -- input layer
Returns:
[keras layer] -- [output layer]
'''
shortcut = inp
shortcut = conv2d_bn(shortcut, filters, 1, 1,
activation=None, padding='same')
out = conv2d_bn(inp, filters, 3, 3, activation='relu', padding='same')
out = add([shortcut, out])
out = Activation('relu')(out)
out = BatchNormalization(axis=3)(out)
for i in range(length-1):
shortcut = out
shortcut = conv2d_bn(shortcut, filters, 1, 1,
activation=None, padding='same')
out = conv2d_bn(out, filters, 3, 3, activation='relu', padding='same')
out = add([shortcut, out])
out = Activation('relu')(out)
out = BatchNormalization(axis=3)(out)
return out
def DCUNet(height, width, channels):
'''
DC-UNet
Arguments:
height {int} -- height of image
width {int} -- width of image
n_channels {int} -- number of channels in image
Returns:
[keras model] -- MultiResUNet model
'''
inputs = Input((height, width, channels))
dcblock1 = DCBlock(32, inputs)
pool1 = MaxPooling2D(pool_size=(2, 2))(dcblock1)
dcblock1 = ResPath(32, 4, dcblock1)
dcblock2 = DCBlock(32*2, pool1)
pool2 = MaxPooling2D(pool_size=(2, 2))(dcblock2)
dcblock2 = ResPath(32*2, 3, dcblock2)
dcblock3 = DCBlock(32*4, pool2)
pool3 = MaxPooling2D(pool_size=(2, 2))(dcblock3)
dcblock3 = ResPath(32*4, 2, dcblock3)
dcblock4 = DCBlock(32*8, pool3)
pool4 = MaxPooling2D(pool_size=(2, 2))(dcblock4)
dcblock4 = ResPath(32*8, 1, dcblock4)
dcblock5 = DCBlock(32*16, pool4)
up6 = concatenate([Conv2DTranspose(
32*8, (2, 2), strides=(2, 2), padding='same')(dcblock5), dcblock4], axis=3)
dcblock6 = DCBlock(32*8, up6)
up7 = concatenate([Conv2DTranspose(
32*4, (2, 2), strides=(2, 2), padding='same')(dcblock6), dcblock3], axis=3)
dcblock7 = DCBlock(32*4, up7)
up8 = concatenate([Conv2DTranspose(
32*2, (2, 2), strides=(2, 2), padding='same')(dcblock7), dcblock2], axis=3)
dcblock8 = DCBlock(32*2, up8)
up9 = concatenate([Conv2DTranspose(32, (2, 2), strides=(
2, 2), padding='same')(dcblock8), dcblock1], axis=3)
dcblock9 = DCBlock(32, up9)
conv10 = conv2d_bn(dcblock9, 1, 1, 1, activation='sigmoid')
model = Model(inputs=[inputs], outputs=[conv10])
return model