-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
40 lines (30 loc) · 1.24 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from flask import Flask, render_template, jsonify, redirect, url_for, request
from flask_cors import CORS
from regression import regression
from classification import classification
from prediciton import pred
import matplotlib.pyplot as plt
import pandas as pd
app = Flask(__name__)
CORS(app) # Enable CORS for all routes
# Load the data from a CSV file
data = pd.read_csv('data/crime2001_2012.csv')
@app.route('/')
def index():
return render_template('index.html')
@app.route('/crime_output', methods=['POST'])
def suggest_plans():
input_state = request.form['input_state']
input_district = request.form['input_district']
input_year = request.form['input_year']
input_period = request.form['input_period']
crime_types, predicted_rates = regression(data, input_state, input_district, input_year)
class_result = classification(data, input_state, input_district, input_year)
model,future = pred(data, input_period)
forecast = model.forecast(future)
fig2 = model.plot_components(forecast)
plt.show()
return render_template('forecast.html', crime_type = crime_types, predicted_rates = predicted_rates, class_result =
class_result)
if __name__ == '__main__':
app.run(debug=True)