-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprediciton.py
55 lines (41 loc) · 1.64 KB
/
prediciton.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import numpy as np
import pandas as pd
import ipywidgets as widgets
from IPython.display import display
from prophet import Prophet
import matplotlib.pyplot as plt
import datetime
import warnings
warnings.filterwarnings("ignore")
def pred(data, period):
# Ensure 'YEAR' is in a proper date format
data['YEAR'] = pd.to_datetime(data['YEAR'].astype(str) + "-01-01")
# Get the current date
current_date = datetime.datetime.now()
# Extend the data to include at least the current date
latest_date = data['YEAR'].max()
if latest_date < current_date:
current_row = pd.DataFrame({
'STATE/UT': ["UNKNOWN"], # Use an appropriate value for your context
'YEAR': [current_date],
'TOTAL IPC CRIMES': [0] # Default value; adjust as needed
})
data = pd.concat([data, current_row], ignore_index=True)
# Group by year and sum total IPC crimes
crime_ts = data.groupby(['YEAR'])['TOTAL IPC CRIMES'].sum().reset_index()
# Rename columns for Prophet
crime_ts.rename(columns={'YEAR': 'ds', 'TOTAL IPC CRIMES': 'y'}, inplace=True)
# Create a Prophet model
model = Prophet()
# Fit the model
model.fit(crime_ts)
# Generate future dates for prediction
# We use the current date and add the desired number of future days
future_dates = pd.date_range(current_date, periods=period, freq='D')
# Convert to DataFrame with 'ds' column for Prophet
future_dates_df = pd.DataFrame({'ds': future_dates})
# Predict future values
forecast = model.predict(future_dates_df)
return model,future_dates_df
#fig2 = model.plot_components(forecast)
#plt.show()