forked from duducheng/2048-api
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
181 lines (160 loc) · 5.51 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#!/usr/bin/env python
# coding: utf-8
# # Pytorch Tutorial
# Pytorch is a popular deep learning framework and it's easy to get started.
import torch
from torch.autograd import Variable
import torch.nn as nn
import pandas as pd
import torch.utils.data as data
import torchvision
import torchvision.transforms as transforms
import time
import csv
from tqdm import tqdm
import numpy as np
BATCH_SIZE = 128
NUM_EPOCHS = 60
CHANNEL=12
OUT_SHAPE=(4,4)
def grid_ohe(input):
out=[]
each_c=[]
for counter in range(len(input)):
oneofinput = input[counter, :]
for i in range(CHANNEL):
ret=np.zeros(shape=(4,4),dtype=int)
for r in range(4):
for c in range(4):
if i==oneofinput[4*r+c]:
ret[r,c]=1
each_c.append(ret)
out.append(each_c)
each_c = []
return out#shape:4*4*channel
# with open('data_test.csv','r') as csvfile:
# reader = csv.reader(csvfile)
# rows = [row for row in reader]
# input = np.array(rows).astype('float')
# input = torch.FloatTensor(input)
# train_loader = data.DataLoader(input, batch_size=BATCH_SIZE, shuffle=True, drop_last=True)
data_read= pd.read_csv('data_train.csv')
data_train=data_read.values
board_train = data_train[:,0:16]
board_train=grid_ohe(np.int_(board_train))
direction_train=np.int_(data_train[:,16])
board_train = torch.FloatTensor(board_train)
direction_train= torch.LongTensor(direction_train)
train_dataset = data.TensorDataset(board_train,direction_train)
train_loader =data.DataLoader(dataset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)
data_read= pd.read_csv('data_test.csv')
data_test=data_read.values
board_test = data_test[:,0:16]
board_test=grid_ohe(np.int_(board_test))
direction_test=np.int_(data_test[:,16])
board_test = torch.FloatTensor(board_test)
direction_test= torch.LongTensor(direction_test)
test_dataset = data.TensorDataset(board_test,direction_test)
test_loader =data.DataLoader(dataset=train_dataset,batch_size=BATCH_SIZE,shuffle=False)
# TODO:define model
class SimpleNet(nn.Module):
def __init__(self):
super(SimpleNet, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(CHANNEL, 64, kernel_size=(1, 4), padding=(0, 2)),
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=(4, 1), padding=(2, 0)),
nn.ReLU(),
nn.Conv2d(128, 128, kernel_size=(2, 2)),
nn.ReLU(),
nn.Conv2d(128, 128, kernel_size=(3, 3), padding=(1, 1)),
nn.ReLU(),
nn.Conv2d(128, 128, kernel_size=(4, 4), padding=(2, 2)),
nn.ReLU()
)
self.fc = nn.Sequential(
nn.BatchNorm1d(128 * 5 * 5),
nn.Linear(128*5*5, 2048),
nn.ReLU(),
# nn.Dropout(0.3),
# nn.BatchNorm1d(2048),
# nn.Linear(2048,2048),#去掉这个全连接层
# nn.ReLU(),
# nn.Dropout(0.5),
nn.BatchNorm1d(2048),
nn.Linear(2048,256),
nn.ReLU(),
# nn.Dropout(0.5),
nn.BatchNorm1d(256),
nn.Linear(256,4)
# nn.BatchNorm1d(2048),
# nn.Linear(2048,1024),
# nn.ReLU(),
# # nn.Dropout(0.5),
# nn.BatchNorm1d(1024),
# nn.Linear(1024,4)
)
def forward(self, x):
out = self.conv1(x)
out = out.view(out.shape[0], -1) # reshape
out = self.fc(out)
return out
#class SimpleNet(nn.Module):
# def __init__(self):
# super(SimpleNet, self).__init__()
# self.conv = nn.Sequential(
# nn.Conv2d(1, 6, 2,padding=(1,1)), # in_channels, out_channels, kernel_size
# nn.Sigmoid(),
# #nn.MaxPool2d(2, 2), # kernel_size, stride
# nn.Conv2d(6, 16, 3),
# nn.Sigmoid(),
# #nn.MaxPool2d(2, 2)
# )
# self.fc = nn.Sequential(
# nn.Linear(144, 120),
# nn.Sigmoid(),
# nn.Linear(120, 84),
# nn.Sigmoid(),
# nn.Linear(84, 16)
# )
#
# def forward(self, img):
# feature = self.conv(img)
# output = self.fc(feature.view(img.shape[0], -1))
# return output
model = SimpleNet()
#model.load_state_dict(torch.load('model.pkl'))#继承
model=model.cuda()
# TODO:define loss function and optimiter
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(),0.001)
# Next, we can start to train and evaluate!
for epoch in range(NUM_EPOCHS):
model.train()
for i, (image,label) in enumerate(tqdm(train_loader)):
image, label = Variable(image).cuda(), Variable(label).cuda()
optimizer.zero_grad()
outputs = model(image)
loss = criterion(outputs, label)
loss.backward()
optimizer.step()
print('\n Epoch [%d/%d], Loss_item: %.4f'% (epoch + 1, NUM_EPOCHS, loss.item()))
#if loss.item()<0.20:
if epoch > 20:
torch.save(model.state_dict(), 'epoch{}.pkl'.format(epoch+1))#save low loss model
# Save the Trained Model
torch.save(model.state_dict(), 'model.pkl')
model.eval()
correct=0.00
total=0.00
for i, (image,label) in enumerate(tqdm(test_loader)):
image, label = Variable(image).cuda(), Variable(label).cuda()
outputs=model(image)
# print('outputs')
# print(outputs)
_,predicted=torch.max(outputs.data,1)
# print('predicted')
# print(predicted)
total+=label.size(0)
correct+=(predicted==label).sum()
print('\n Accuracy of test=%.4f'% (correct/total))