-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpicloud_runner_nonlinearModel.py
45 lines (33 loc) · 1.22 KB
/
picloud_runner_nonlinearModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import sys
import pickle
import cloud
cloud.setkey(7513, api_secretkey='ca43a3535fa17e28b687f0f1691c67db261392ae')
cloud_environment = 'Julia'
"""
number_of_clusters = int(sys.argv[1])
if_zero_shortlearning = sys.argv[2] # Should be "yes" or "no"
experiment_name = sys.argv[3]"""
# Usage: python picloud_runner.py 100 50 10 2
TRIALS = int(sys.argv[1])
NUM_PARTICLES = int(sys.argv[2])
#DELTA = int(sys.argv[3])
#INTEGRAL_PATHS = int(sys.argv[4])
def run_on_instance(trial_id):
global number_of_clusters
global if_zero_shortlearning
global experiment_name
import subprocess
import os
os.environ['DISPLAY'] = ":1"
print "Starting"
ls_output = subprocess.Popen(["/home/picloud/julia/julia", "lookaheadPartilce.jl", str(NUM_PARTICLES)], \
cwd = "/home/picloud/ParticleFilterLookahead/", \
stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, err = ls_output.communicate()
return out
#result = run_on_instance([1])
jids = cloud.map(run_on_instance, range(TRIALS), _env=cloud_environment, _type='c2', _cores=1)
print jids
result = cloud.result(jids)
pickle.dump(result, open("result_"+str(NUM_PARTICLES)+"particles_"+"path.pkl","wb"))
print "RESULT:", result