-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcfKNN.py
128 lines (93 loc) · 4.26 KB
/
cfKNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import numpy as np
import pandas as pd
from tqdm import tqdm
class CFKNN:
__version__ = "CFKNN-1.0"
def __init__(self, k, pow_alpha, pow_beta, train=None, val=None, verbose=True):
'''
'''
self.train_id = train["id"]
self.train_songs = train["songs"]
self.train_tags = train["tags"]
del train
self.val_id = val["id"]
self.val_songs = val["songs"]
self.val_tags = val["tags"]
del val
self.k = k
self.pow_alpha = pow_alpha
self.pow_beta = pow_beta
self.verbose = verbose
if not (0 <= self.pow_alpha <= 1):
raise ValueError('pow_alpha is out of [0,1].')
if not (0 <= self.pow_beta <= 1):
raise ValueError('pow_beta is out of [0,1].')
freq_songs = np.zeros(707989, dtype=np.int64)
for _songs in self.train_songs:
freq_songs[_songs] += 1
self.freq_songs_powered_beta = np.power(freq_songs, self.pow_beta)
self.freq_songs_powered_another_beta = np.power(freq_songs, 1-self.pow_beta)
def predict(self, start=0, end=None, auto_save=False, auto_save_step=500, auto_save_fname='auto_save'):
'''
'''
if end:
_range = tqdm(range(start, end)) if self.verbose else range(start, end)
elif start > 0 and end == None:
_range = tqdm(range(start, self.val_id.index.stop)) if self.verbose else range(start, self.val_id.index.stop)
else:
_range = tqdm(self.val_id.index) if self.verbose else self.val_id.index
pred = []
all_songs = [set(songs) for songs in self.train_songs] # list of set
all_tags = [set(tags) for tags in self.train_tags] # list of set
# TODO: use variables instead of constants
TOTAL_SONGS = 707989 # total number of songs
MAX_SONGS_FREQ = 2175 # max freqency of songs for all playlists in train data
TOTAL_PLAYLISTS = 115071 # total number of playlists
for uth in _range:
playlist_songs = set(self.val_songs[uth])
playlist_tags = set(self.val_tags[uth])
playlist_size = len(playlist_songs)
track_feature = np.zeros((TOTAL_SONGS, MAX_SONGS_FREQ))
track_feature_about_v = np.zeros((TOTAL_SONGS, MAX_SONGS_FREQ), dtype=np.int64)
relevance = np.zeros(TOTAL_SONGS)
k = self.k
if len(playlist_songs) == 0:
pass
# equation (6)
index = {i:0 for i in range(TOTAL_SONGS)}
for vth, vplaylist in enumerate(all_songs):
intersect = len(playlist_songs & vplaylist)
weight = 1 / (pow(len(vplaylist), self.pow_alpha))
if intersect != 0:
for track_i in vplaylist:
_idx = index[track_i]
index[track_i] += 1
track_feature[track_i, _idx] = intersect * weight
track_feature_about_v[track_i, _idx] = vth
# equation (7) and (8) : similarity and relevance
for track_i in range(TOTAL_SONGS):
if track_feature[track_i, 0] != 0:
feature_i = np.array([])
contain_i = self.freq_songs_powered_beta[track_i]
sum_of_sim = 0
for track_j in playlist_songs:
feature_j = np.array([])
contain_j = self.freq_songs_powered_another_beta[track_j]
sum_of_sim += sum(feature_i * feature_j) / (contain_i * contain_j)
relevance[track_i] = (1 / playlist_size) * sum_of_sim
return track_feature, track_feature_about_v
if __name__=="__main__":
# data_load
train = pd.read_json("res/train.json")
val = pd.read_json("res/val.json")
# test = pd.read_json("res/test.json")
# modeling
pred = CFKNN(k=100, pow_alpha=1, pow_beta=0.5, train=train, val=val).predict(end=1)
# print(pred)
# track_feature = pred[0]
# for i in range(track_feature.shape[0]):
# if track_feature[i, 0] != 0:
# print(track_feature[i, :5])
# print(pred[1][i, :5])
# if i > 1000:
# break