-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
54 lines (43 loc) · 1.47 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
import cv2
import numpy as np
import courtdetection_sparse
import yolov4_deepsort.tracker
# Open video file
capture = cv2.VideoCapture('videos/best_trim.mp4')
# Initialise necessary variables
formatpoints = []
formatsourcepoints = []
frame_count = 0
frame = None
# Read video frame by frame
while(capture.isOpened()):
old_frame = frame
ret, frame = capture.read()
# End loop when video ends
if ret == False:
break
# Increment frame count
frame_count += 1
# STEP1: COURT DETECTION
# If it's the first frame, we need to ask for user input
if frame_count == 1:
result, points, sourcepoints = courtdetection_sparse.firstdetection(frame)
# Convert points into correct format for optical flow function
for point in points[0]:
formatpoints.append([point])
#formatpoints = np.array(formatpoints, np.float32)
# Otherwise compute court detection from the previous detection + optical flow
else:
result, points, sourcepoints = courtdetection_sparse.nextdetection(old_frame, frame, formatpoints, sourcepoints)
# STEP2: PLAYER DETECTION AND TRACKING
yolov4_deepsort.detect_and_track(capture, frame)
# Display the frame
# cv2.imshow('Frame', result)
# Press 'Q' to exit, wait _ milliseconds between each frames
if cv2.waitKey(10) & 0xFF == ord('q'):
break
# Release video capture object
capture.release()
# Close all windows
cv2.destroyAllWindows()