forked from sundw2014/NeuReach
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNeuReach.py
179 lines (147 loc) · 7.15 KB
/
NeuReach.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import torch
import torch.nn.functional as F
import numpy as np
import time
import importlib
from utils import AverageMeter
from tensorboardX import SummaryWriter
from data import get_dataloader
from model import get_model
import sys
sys.path.append('systems')
import argparse
parser = argparse.ArgumentParser(description="")
parser.add_argument('--system', type=str,
default='jetengine', help='Name of the dynamical system.')
parser.add_argument('--lambda', dest='_lambda', type=float, default=0.03, help='lambda for balancing the two loss terms.')
parser.add_argument('--alpha', dest='alpha', type=float, default=0.001, help='Hyper-parameter in the hinge loss.')
parser.add_argument('--N_X0', type=int, default=100, help='Number of samples for the initial set X0.')
parser.add_argument('--N_x0', type=int, default=10, help='Number of samples for the initial state x0.')
parser.add_argument('--N_t', type=int, default=100, help='Number of samples for the time instant t.')
parser.add_argument('--layer1', type=int, default=64, help='Number of neurons in the first layer of the NN.')
parser.add_argument('--layer2', type=int, default=64, help='Number of neurons in the second layer of the NN.')
parser.add_argument('--epochs', type=int, default=30, help='Number of epochs for training.')
parser.add_argument('--lr', dest='learning_rate', type=float, default=0.01, help='Learning rate.')
parser.add_argument('--data_file_train', default='train.pklz', type=str, help='Path to the file for storing the generated training data set.')
parser.add_argument('--data_file_eval', default='eval.pklz', type=str, help='Path to the file for storing the generated evaluation data set.')
parser.add_argument('--log', type=str, help='Path to the directory for storing the logging files.')
parser.add_argument('--no_cuda', dest='use_cuda', action='store_false', help='Use this option to disable cuda, if you want to train the NN on CPU.')
parser.set_defaults(use_cuda=True)
parser.add_argument('--bs', dest='batch_size', type=int, default=256)
parser.add_argument('--num_test', type=int, default=10)
parser.add_argument('--lr_step', type=int, default=10)
parser.add_argument('--seed', type=int, default=0)
args = parser.parse_args()
np.random.seed(args.seed)
torch.manual_seed(args.seed)
os.system('mkdir '+args.log)
os.system('echo "%s" > %s/cmd.txt'%(' '.join(sys.argv), args.log))
os.system('cp *.py '+args.log)
os.system('cp -r systems/ '+args.log)
os.system('cp -r ODEs/ '+args.log)
config = importlib.import_module('system_'+args.system)
model, forward = get_model(len(config.sample_X0())+1, config.simulate(config.get_init_center(config.sample_X0())).shape[1]-1, config, args)
if args.use_cuda:
model = model.cuda()
else:
model = model.cpu()
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every * epochs"""
lr = args.learning_rate * (0.1 ** (epoch // args.lr_step))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def save_checkpoint(state, filename='checkpoint.pth.tar'):
filename = args.log + '/' + filename
torch.save(state, filename)
def hinge_loss_function(LHS, RHS):
res = LHS - RHS + args.alpha
res[res<0] = 0
return res
global_step = 0
def trainval(epoch, dataloader, writer, training):
global global_step
loss = AverageMeter()
hinge_loss = AverageMeter()
volume_loss = AverageMeter()
l2_loss = AverageMeter()
error_2 = AverageMeter()
prec = AverageMeter()
result = [[],[],[],[],[]] # for plotting
if training:
model.train()
else:
model.eval()
end = time.time()
for step, (X0, t, ref, xt) in enumerate(dataloader):
batch_size = X0.size(0)
time_str = 'data time: %.3f s\t'%(time.time()-end)
end = time.time()
if args.use_cuda:
X0 = X0.cuda()
t = t.cuda()
ref = ref.cuda()
xt = xt.cuda()
TransformMatrix = forward(torch.cat([X0,t], dim=1))
time_str += 'forward time: %.3f s\t'%(time.time()-end)
end = time.time()
DXi = xt - ref
LHS = ((torch.matmul(TransformMatrix, DXi.view(batch_size,-1,1)).view(batch_size,-1)) ** 2).sum(dim=1)
RHS = torch.ones(LHS.size()).type(DXi.type())
_hinge_loss = hinge_loss_function(LHS, RHS)
_volume_loss = -torch.log((TransformMatrix + 0.01 * torch.eye(TransformMatrix.shape[-1]).unsqueeze(0).type(X0.type())).det().abs())
mask = _hinge_loss > 0
_volume_loss[mask] = 0.
_hinge_loss = _hinge_loss.mean()
_volume_loss = _volume_loss.mean()
CY2 = torch.sqrt(LHS)
Y2 = torch.sqrt((DXi.view(batch_size,-1) ** 2).sum(dim=1))
_l2_loss = (torch.abs((CY2 - 1)) * Y2 / CY2).mean()
_loss = _hinge_loss + args._lambda * _volume_loss
loss.update(_loss.item(), batch_size)
prec.update((LHS.detach().cpu().numpy() <= (RHS.detach().cpu().numpy())).sum() / batch_size, batch_size)
hinge_loss.update(_hinge_loss.item(), batch_size)
volume_loss.update(_volume_loss.item(), batch_size)
l2_loss.update(_l2_loss.item(), batch_size)
if writer is not None and training:
writer.add_scalar('loss', loss.val, global_step)
writer.add_scalar('prec', prec.val, global_step)
writer.add_scalar('Volume_loss', volume_loss.val, global_step)
writer.add_scalar('Hinge_loss', hinge_loss.val, global_step)
writer.add_scalar('L2_loss', l2_loss.val, global_step)
time_str += 'other time: %.3f s\t'%(time.time()-end)
c = time.time()
if training:
global_step += 1
optimizer.zero_grad()
_loss.backward()
optimizer.step()
time_str += 'backward time: %.3f s'%(time.time()-c)
end = time.time()
print('Loss: %.3f, PREC: %.3f, HINGE_LOSS: %.3f, VOLUME_LOSS: %.3f, L2_loss: %.3f'%(loss.avg, prec.avg, hinge_loss.avg, volume_loss.avg, l2_loss.avg))
if writer is not None and not training:
writer.add_scalar('loss', loss.avg, global_step)
writer.add_scalar('prec', prec.avg, global_step)
writer.add_scalar('Volume_loss', volume_loss.avg, global_step)
writer.add_scalar('Hinge_loss', hinge_loss.avg, global_step)
writer.add_scalar('L2_loss', l2_loss.avg, global_step)
return result, loss.avg, prec.avg
train_loader, val_loader = get_dataloader(config, args)
train_writer = SummaryWriter(args.log+'/train')
val_writer = SummaryWriter(args.log+'/val')
best_loss = np.inf
best_prec = 0
for epoch in range(args.epochs):
adjust_learning_rate(optimizer, epoch)
# train for one epoch
print('Epoch %d'%(epoch))
_, _, _ = trainval(epoch, train_loader, writer=train_writer, training=True)
result_train, _, _ = trainval(epoch, train_loader, writer=None, training=False)
result_val, loss, prec = trainval(epoch, val_loader, writer=val_writer, training=False)
epoch += 1
# if prec > best_prec:
if loss < best_loss:
best_loss = loss
# best_prec = prec
save_checkpoint({'epoch': epoch + 1, 'state_dict': model.state_dict()})