forked from Ridhwanluthra/NLMS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathedging.py
51 lines (47 loc) · 1.25 KB
/
edging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import cv2
import numpy as np
def countArray(i, j):
counter=0
for row in range(i, i+m):
for column in range(j, j+n):
if(inputArray[i][j]==255):
counter+=1
return counter
def edging(dir):
img = cv2.imread(dir, cv2.IMREAD_COLOR)
edges=cv2.Canny(img,100,200)
oppp=[]
for x in xrange(edges.shape[0]):
opp=[]
for y in xrange(edges.shape[1]):
opp.append(edges[x][y])
pass
oppp.append(opp)
pass
#Save image to storage with a pseudo-unique name
cv2.imwrite('img.png', edges)
#if the number of cells in inputArray having value 255 are greater than "K",then value is 1 in output
#here I am setting k=50
k=20
s01_=edges.shape[0]
s02_=edges.shape[1]
m=edges.shape[0]/10
n=edges.shape[1]/10
c=[]
inputArray=[]
#populating input array with random numbers 0 and 255 for testing purposes
for i in range (s01_):
for j in range (s02_):
c.append(edges[i][j])
inputArray.append(c)
c=[]
outputArrayRows=s01_/m
outputArrayColumns=s02_/n
outputArray=[[] for i in range (outputArrayColumns)]
for i in range (outputArrayRows):
for j in range (outputArrayColumns):
if countArray(i*m,j*n)>=k:
outputArray[i].append(1)
else:
outputArray[i].append(0)
return outputArray