-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfluiddynamics.py
99 lines (82 loc) · 3.75 KB
/
fluiddynamics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import numpy as np
import matplotlib.pyplot as plt
# defining domain
grid_size = 50 # number of cells in each dimension
domain_size = 1.0 # length of the domain
dx = domain_size / grid_size # cell size
# creating grid
x = np.linspace(0, domain_size, grid_size)
y = np.linspace(0, domain_size, grid_size)
X, Y = np.meshgrid(x, y)
# initialising fluid properties
u = np.zeros((grid_size, grid_size)) # x-component of velocity
v = np.zeros((grid_size, grid_size)) # y-component of velocity
pressure = np.zeros((grid_size, grid_size)) # pressure (p)
# simulation parameters
viscosity = 0.1 # viscosity of the fluid
time_step = 0.01 # time step size
num_steps = 100 # number of time steps
density = 1.0 # p
# discretising the equations (using the finite difference method hopefully)
def simulate_flow():
for step in range(num_steps):
# computing velocity gradients
du_dx = (u[1:, :] - u[:-1, :]) / dx # finite difference method - we're calculating the gradients by subtracting the velocity values along the x-direction then dividing by cell size...
du_dy = (u[:, 1:] - u[:, :-1]) / dx # ... in order to approximate the derivative!
dv_dx = (v[1:, :] - v[:-1, :]) / dx
dv_dy = (v[:, 1:] - v[:, :-1]) / dx
# now to compute pressure gradients
dp_dx = (pressure[1:, :] - pressure[:-1, :]) / dx
dp_dy = (pressure[:, 1:] - pressure[:, :-1]) / dx
# Runge-Kutta coefficients
a2 = 1.0 / 2.0
a3 = 1.0 / 2.0
a4 = 1.0
def simulate_flow():
for step in range(num_steps):
# Runge-Kutta time integration
for rk_step in range(4):
# to compute velocity gradients and pressure gradients at the current time
du_dx = (u[1:, :] - u[:-1, :]) / dx
du_dy = (u[:, 1:] - u[:, :-1]) / dx
dv_dx = (v[1:, :] - v[:-1, :]) / dx
dv_dy = (v[:, 1:] - v[:, :-1]) / dx
dp_dx = (pressure[1:, :] - pressure[:-1, :]) / dx
dp_dy = (pressure[:, 1:] - pressure[:, :-1]) / dx
# now to compute the intermediate velocity fields using current gradients
u_temp = u + time_step * (-u * du_dx - v * du_dy + (1.0 / density) * dp_dx + viscosity * (du_dx ** 2 + du_dy ** 2))
v_temp = v + time_step * (-u * dv_dx - v * dv_dy + (1.0 / density) * dp_dy + viscosity * (dv_dx ** 2 + dv_dy ** 2))
# then computing velocity gradients and pressure gradients at INTERMEDIATE time
du_dx_temp = (u_temp[1:, :] - u_temp[:-1, :]) / dx
du_dy_temp = (u_temp[:, 1:] - u_temp[:, :-1]) / dx
dv_dx_temp = (v_temp[1:, :] - v_temp[:-1, :]) / dx
dv_dy_temp = (v_temp[:, 1:] - v_temp[:, :-1]) / dx
# finally computing final velocity fields using intermediate gradients
u = u + a2 * time_step * (-u_temp * du_dx_temp - v_temp * du_dy_temp + (1.0 / density) * dp_dx + viscosity * (du_dx_temp ** 2 + du_dy_temp ** 2))
v = v + a2 * time_step * (-u_temp * dv_dx_temp - v_temp * dv_dy_temp + (1.0 / density) * dp_dy + viscosity * (dv_dx_temp ** 2 + dv_dy_temp ** 2))
# Implementing boundary conditions :D
def apply_boundary_conditions():
# Setting all velocity values at the boundaries to 0
u[0, :] = 0
u[-1, :] = 0
u[:, 0] = 0
u[:, -1] = 0
v[0, :] = 0
v[-1, :] = 0
v[:, 0] = 0
v[:, -1] = 0
# And to visualise:
def plot_flow(step):
plt.clf()
plt.quiver(X, Y, u, v)
plt.title(f"Fluid Flow - Step {step}")
plt.xlabel("X")
plt.ylabel("Y")
plt.xlim(0, domain_size)
plt.ylim(0, domain_size)
plt.draw()
plt.pause(0.01)
if step % 10 == 0: # Plot every 10 (or perhaps 15) steps
plot_flow(step)
simulate_flow()
plt.show()