This Jupyter Notebook implements Retrieval-Augmented Generation (RAG) using NVIDIA AI models for embeddings and chat, and Azure SQL Database for storing and retrieving resume embeddings.
- Uses NVIDIA AI models (
meta/llama-3.3-70b-instruct
andnvidia/embed-qa-4
). - Stores resume embeddings in Azure SQL Database.
- Supports optimized vector search for relevant candidates.
- Implements streaming responses for better chatbot experience.
- Install dependencies:
pip install -r requirements.txt
- Set up your
.env
file with API keys:NVIDIA_API_KEY=your_nvidia_api_key_here NVIDIA_CHAT_API_KEY=your_nvidia_chat_model_api_key_here AZUREDOCINTELLIGENCE_ENDPOINT=your_azure_doc_intelligence_endpoint_here AZUREDOCINTELLIGENCE_API_KEY=your_azure_doc_intelligence_api_key_here AZURE_SQL_CONNECTION_STRING=your_azure_sql_connection_string_here FILE_PATH=Path to the resume dataset
- Run the notebook.
NVIDIA-RAG-with-resumes.ipynb
→ Main Jupyter Notebook.env
→ Environment variables for API keysREADME.md
→ DocumentationCreateTable.sql
→ Create Table for Azure SQL Database
We use a sample dataset from Kaggle containing PDF resumes for this tutorial. For the purpose of this tutorial we will use 120 resumes from the Information-Technology folder