Skip to content

Files

Latest commit

 

History

History

NVIDIA-AI-SQL

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

RAG with NVIDIA AI and Azure SQL

This Jupyter Notebook implements Retrieval-Augmented Generation (RAG) using NVIDIA AI models for embeddings and chat, and Azure SQL Database for storing and retrieving resume embeddings.

Features

  • Uses NVIDIA AI models (meta/llama-3.3-70b-instruct and nvidia/embed-qa-4).
  • Stores resume embeddings in Azure SQL Database.
  • Supports optimized vector search for relevant candidates.
  • Implements streaming responses for better chatbot experience.

Setup Instructions

  1. Install dependencies:
    pip install -r requirements.txt
  2. Set up your .env file with API keys:
    NVIDIA_API_KEY=your_nvidia_api_key_here
    NVIDIA_CHAT_API_KEY=your_nvidia_chat_model_api_key_here
    AZUREDOCINTELLIGENCE_ENDPOINT=your_azure_doc_intelligence_endpoint_here   AZUREDOCINTELLIGENCE_API_KEY=your_azure_doc_intelligence_api_key_here
    AZURE_SQL_CONNECTION_STRING=your_azure_sql_connection_string_here
    FILE_PATH=Path to the resume dataset
  3. Run the notebook.

File Structure

  • NVIDIA-RAG-with-resumes.ipynb → Main Jupyter Notebook
  • .env → Environment variables for API keys
  • README.md → Documentation
  • CreateTable.sql → Create Table for Azure SQL Database

Dataset

We use a sample dataset from Kaggle containing PDF resumes for this tutorial. For the purpose of this tutorial we will use 120 resumes from the Information-Technology folder