-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_ic15.py
248 lines (196 loc) · 8.98 KB
/
test_ic15.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
os.environ["CUDA_VISIBLE_DEVICES"] ="1"
import cv2
import sys
import time
import collections
import torch
import argparse
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils import data
import time
from dataset import IC15TestLoader
import models
import util
def write_result_as_txt(image_name, bboxes, path):
filename = util.io.join_path(path, 'res_%s.txt'%(image_name))
lines = []
for b_idx, bbox in enumerate(bboxes):
values = [int(v) for v in bbox]
line = "%d, %d, %d, %d, %d, %d, %d, %d\n"%tuple(values)
lines.append(line)
util.io.write_lines(filename, lines)
def get_label_num(text,min_area):
label_num, label = cv2.connectedComponents(text, connectivity=4)
for label_idx in range(1, label_num):
if np.sum(label == label_idx) < min_area:
label[label == label_idx] = 0
label_num-=1
return label_num,label
def get_cat_tag(text,kernel):
text = text.data.cpu().numpy().astype(np.uint8)
kernel = kernel.data.cpu().numpy().astype(np.uint8)
label_num_text, label_text = get_label_num(text, 100)
label_num_kernel, label_kernel = get_label_num(kernel, 100)
tag = []
for i in range(1, int(label_kernel.max()) + 1):
if ((label_kernel == i).sum() > 0):
tag.append(i)
tag_cat = []
for i in tag:
tag_cat.append([i, ((label_kernel == i) * label_text).max()])
return tag_cat,label_kernel,label_text
def get_kernel_compose(tag):
get_i = 0
out =[]
while(get_i<(len(tag)-1)):
for get_j in range(get_i+1,len(tag)):
out.append([tag[get_i],tag[get_j]])
get_i+=1
return out
def scale_long(img, long_size=2240):
h, w = img.shape[0:2]
scale = long_size * 1.0 / max(h, w)
img = cv2.resize(img, dsize=None, fx=scale, fy=scale)
return img
def scale_short(img, short_size=736):
h, w = img.shape[0:2]
scale = short_size * 1.0 / min(h, w)
img = cv2.resize(img, dsize=None, fx=scale, fy=scale)
return img
def test(args):
data_loader = IC15TestLoader(long_size=args.long_size)
test_loader = torch.utils.data.DataLoader(
data_loader,
batch_size=1,
shuffle=False,
num_workers=2,
drop_last=True)
# Setup Model
if args.arch == "resnet50":
model = models.resnet50(pretrained=True, num_classes=6, scale=args.scale)
elif args.arch == "resnet101":
model = models.resnet101(pretrained=True, num_classes=7, scale=args.scale)
elif args.arch == "resnet152":
model = models.resnet152(pretrained=True, num_classes=7, scale=args.scale)
for param in model.parameters():
param.requires_grad = False
model = model.cuda()
if args.resume is not None:
if os.path.isfile(args.resume):
print("Loading model and optimizer from checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
# model.load_state_dict(checkpoint['state_dict'])
d = collections.OrderedDict()
for key, value in checkpoint['state_dict'].items():
tmp = key[7:]
d[tmp] = value
model.load_state_dict(d)
print("Loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
sys.stdout.flush()
else:
print("No checkpoint found at '{}'".format(args.resume))
sys.stdout.flush()
model.eval()
total_frame = 0.0
total_time = 0.0
bboxs = []
bboxes = []
for idx, (org_img, img) in enumerate(test_loader):
print('progress: %d / %d'%(idx, len(test_loader)))
sys.stdout.flush()
img = Variable(img.cuda())
org_img = org_img.numpy().astype('uint8')[0]
text_box = org_img.copy()
with torch.no_grad():
outputs = model(img)
torch.cuda.synchronize()
start = time.time()
similarity_vector=outputs[0,2:,:,:]
similarity_vector_ori = similarity_vector.permute(( 1, 2, 0))
score = torch.sigmoid(outputs[:, 0, :, :])
score = score.data.cpu().numpy()[0].astype(np.float32)
outputs = (torch.sign(outputs - 1.0) + 1) / 2
text = outputs[0, 0, :, :]
kernel =outputs[0, 1, :, :] * text
tag_cat,label_kernel,label_text = get_cat_tag(text,kernel)
image_name = data_loader.img_paths[idx].split('/')[-1].split('.')[0]
# cv2.imwrite('./test_result/image/text_'+image_name+'.jpg',label_text*255)
# cv2.imwrite('./test_result/image/kernel_'+image_name+'.jpg',label_kernel*255)
label_text = torch.Tensor(label_text).cuda()
label_kernel = torch.Tensor(label_kernel).cuda()
w,h ,_= similarity_vector_ori.shape
similarity_vector = similarity_vector.permute(( 1, 2, 0)).data.cpu().numpy()
bboxs = []
bboxes = []
scale = (org_img.shape[1] * 1.0 / text.shape[1], org_img.shape[0] * 1.0 / text.shape[0])
for item in tag_cat:
similarity_vector_ori1 = similarity_vector_ori.clone()
# mask = torch.zeros((w,h)).cuda()
index_k = (label_kernel==item[0])
index_t = (label_text==item[1])
similarity_vector_k =torch.sum(similarity_vector_ori1[index_k],0)/similarity_vector_ori1[index_k].shape[0]
# similarity_vector_t = similarity_vector_ori1[index_t]
# similarity_vector_t = similarity_vector_ori1[index_t]
similarity_vector_ori1[~index_t] = similarity_vector_k
similarity_vector_ori1 = similarity_vector_ori1.reshape(-1,4)
out = torch.norm((similarity_vector_ori1-similarity_vector_k),2,1)
# out = torch.norm((similarity_vector_t-similarity_vector_k),2,1)
# print(out.shape)
# mask[index_t] = out
out = out.reshape(w,h)
out = out*((text>0).float())
# out = mask*((text>0).float())
out[out>0.8]=0
out[out>0]=1
out_im = (text*out).data.cpu().numpy()
# cv2.imwrite('./test_result/image/out_'+image_name+'.jpg',out_im*255)
points = np.array(np.where(out_im == out_im.max())).transpose((1, 0))[:, ::-1]
if points.shape[0] < 800 :
continue
score_i = np.mean(score[out_im == out_im.max()])
if score_i < 0.93:
continue
rect = cv2.minAreaRect(points)
bbox = cv2.boxPoints(rect) * scale
bbox = bbox.astype('int32')
bboxs.append(bbox)
bboxes.append(bbox.reshape(-1))
# text_box = scale(text_box, long_size=2240)
torch.cuda.synchronize()
end = time.time()
total_frame += 1
total_time += (end - start)
print('fps: %.2f'%(total_frame / total_time))
for bbox in bboxs:
text_box =cv2.line(text_box, (bbox[0,0],bbox[0,1]),(bbox[1,0],bbox[1,1]), (0, 0, 255), 2)
text_box =cv2.line(text_box, (bbox[1,0],bbox[1,1]),(bbox[2,0],bbox[2,1]), (0, 0, 255), 2)
text_box =cv2.line(text_box, (bbox[2,0],bbox[2,1]),(bbox[3,0],bbox[3,1]), (0, 0, 255), 2)
text_box =cv2.line(text_box, (bbox[3,0],bbox[3,1]),(bbox[0,0],bbox[0,1]), (0, 0, 255), 2)
write_result_as_txt(image_name, bboxes, 'test_result/submit_ic15/')
cv2.imwrite('./test_result/image/'+image_name+'.jpg',text_box)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('--arch', nargs='?', type=str, default='resnet50')
parser.add_argument('--resume', nargs='?', type=str, default='./checkpoints/ic15_resnet50_test_test_test_bs_8_ep_600/checkpoint.pth.tar',
help='Path to previous saved model to restart from')
parser.add_argument('--binary_th', nargs='?', type=float, default=1.0,
help='Path to previous saved model to restart from')
parser.add_argument('--kernel_num', nargs='?', type=int, default=2,
help='Path to previous saved model to restart from')
parser.add_argument('--scale', nargs='?', type=int, default=1,
help='Path to previous saved model to restart from')
parser.add_argument('--long_size', nargs='?', type=int, default=2240,
help='Path to previous saved model to restart from')
parser.add_argument('--min_kernel_area', nargs='?', type=float, default=5.0,
help='min kernel area')
parser.add_argument('--min_area', nargs='?', type=float, default=800.0,
help='min area')
parser.add_argument('--min_score', nargs='?', type=float, default=0.93,
help='min score')
args = parser.parse_args()
test(args)