-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHamamatsuPipeline.m
325 lines (271 loc) · 10.8 KB
/
HamamatsuPipeline.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
clear
close all;
clc;
[~, matlab_ver] = version;
matlab_ver = str2double(matlab_ver(end-3:end));
use_pop_ups = false; % change this to True if you want to use UI file selector to select files.
%% set paths
meta.aux_dir = [];
currentFolder = pwd;
meta.img_dir = fullfile(pwd,'/sample data/img_file.h5');
meta.use_intensity_weight = true;
meta.use_lsq_fit = false;
meta.mean_img_dir = [];
meta.dark_dir = fullfile(pwd,'/sample data/dark.mat');
meta.gain_map_dir = fullfile(pwd,'/resources/gain.mat');
meta.mask_dir = fullfile(pwd,'/resources/mask.mat');
%% interaction to decide files and other stuff
if use_pop_ups
title_str = 'Get aux file.';
if ~ispc; menu(title_str,'OK'); end
[aux_file, aux_folder] = uigetfile(fullfile(fileparts(meta.aux_dir),'*.h5'),title_str);
if isnumeric(aux_file)
meta.aux_dir = []; clear aux_folder aux_file
else
meta.aux_dir = fullfile(aux_folder,aux_file); clear aux_folder aux_file
end
title_str = 'Get data file.';
if ~ispc; menu(title_str,'OK'); end
[img_file, img_folder] = uigetfile(fullfile(fileparts(meta.img_dir),'*_506*.h5'),title_str);
meta.img_dir = fullfile(img_folder,img_file);
% mean image file
title_str = 'Choose mean image file. If not chosen, the recorded data will be used.';
if ~ispc; menu(title_str,'OK'); end
if ~isempty(meta.mean_img_dir)
[mean_img_file, mean_img_folder] = uigetfile(fullfile(fileparts(meta.mean_img_dir),'*.mat'),...
title_str);
else
[mean_img_file, mean_img_folder] = uigetfile('.',...
title_str);
end
if isnumeric(mean_img_file)
meta.mean_img_dir = [];
else
meta.mean_img_dir = fullfile(mean_img_folder,mean_img_file);
end
% dark img
title_str = 'Get dark image and variance. H5 files can be used as well.';
if ~ispc; menu(title_str,'OK'); end
[dark_file, dark_folder] = uigetfile(fullfile(fileparts(meta.dark_dir),'*.mat'),title_str);
meta.dark_dir = fullfile(dark_folder,dark_file);
% mask
title_str = 'Get mask file. If not chosen, then default mask will be used.';
if ~ispc; menu(title_str,'OK'); end
[mask_file, mask_folder] = uigetfile(fullfile(fileparts(meta.mask_dir),'*.mat'),title_str);
if isnumeric(mask_file)
clear mask_folder mask_file
else
meta.mask_dir = fullfile(mask_folder,mask_file); clear mask_folder mask_file
end
% load gain map
[gain_map_file, gain_map_folder] = uigetfile(fullfile(fileparts(meta.gain_map_dir),'*.mat'),'Get gain map');
meta.gain_map_dir = fullfile(gain_map_folder,gain_map_file);
else
end
[~,img_file] = fileparts(meta.img_dir);
record_time = img_file(12:end-5);
c = clock();
save_file = ['analyzed_K2_' img_file '_' ...
num2str(c(1)) '_' num2str(c(2)) '_' num2str(c(3)) '_' num2str(c(4)) '_' ...
num2str(c(5)) '.mat'];
t = double(h5read(meta.img_dir,'/timestamp'))*1e-9;
fr = round(1000/(t(2)-t(1)))/1000;
if contains(meta.dark_dir,'.h5')
% get and save dark images
disp('Obtaining the dark image from h5 file.')
dark_meta = h5read(meta.dark_dir,'/Metadata');
dark_length = numel(dark_meta.timestamp);
dark_var = zeros(2304); dark_img = zeros(2304);
for block_start = 1:100:dark_length
disp(['Dark frame # ' num2str(block_start)]);
block_end = min([block_start+100-1 dark_length]);
dark_imgs = double(readHamamatsuH5(meta.dark_dir,[block_start block_end]));
dark_var = dark_var + var(dark_imgs,0,3).*(block_end - block_start + 1);
dark_img = dark_img + mean(dark_imgs,3).*(block_end - block_start + 1); clear dark_imgs;
end
dark_img = dark_img./dark_length;
dark_var = dark_var./dark_length;
meanIDark = dark_img; varIDark = dark_var;
[dark_folder, dark_file] = fileparts(meta.dark_dir);
save(fullfile(dark_folder,[dark_file '_dark.mat']),'varIDark','meanIDark');
dark_var = dark_var - 1/12;
else
dark_data = load(meta.dark_dir);
dark_var = dark_data.varIDark - 1/12;
dark_img = dark_data.meanIDark;
end
load(meta.mask_dir);
load(meta.gain_map_dir);
% disp
disp(meta)
% remove pixels with high variance
mask = mask & dark_var < 100;
%% block averaging parameters
block_size = 100;
window_size = 7;
block_start = 1:block_size:numel(t);
%% get mean image
% get mean time course and select good time indices
disp('get mean time course');
cc_mean = [];
for block=1:10:numel(t)-1
img = double(readHamamatsuH5(meta.img_dir,[block block])) - dark_img;
cc_mean = [cc_mean mean(img(:))];
end
cc_mean = cc_mean';
f_cc_mean = figure;
plot(10:10:10*numel(cc_mean),cc_mean);
good_ind = true(size(t));
% get average image
disp('get average image')
% display average image from initial points
good_start = find(good_ind,1,'first');
mean_img = zeros(size(img,1),size(img,2));
block_starts = good_start:10:find(good_ind,1,'last');
for block_ind = block_starts
img = double(readHamamatsuH5(meta.img_dir,[block_ind block_ind])) - dark_img;
mean_img = mean_img + img;
end
mean_img = mean_img./numel(block_starts);
f1 = figure;
imagesc(mean_img); axis image; colorbar;
% use loaded image if told to do so
if ~isempty(meta.mean_img_dir)
mean_img_data = load(meta.mean_img_dir);
mean_img_reference = mean_img_data.mean_img;
mean_img_reference_frame_num = sum(mean_img_data.good_ind);
else
% if not read through all good indices and create the mean image
mean_img = zeros(size(mean_img));
for block_ind = good_start:block_size:find(good_ind,1,'last')
if mod(block_ind,1000) < 100
disp(['Getting image from frame # ' num2str(block_ind)]);
end
block_length = min([block_size find(good_ind,1,'last')-block_ind+1]);
imgs = double(readHamamatsuH5(meta.img_dir,[block_ind block_ind+block_length-1]));
imgs = double(imgs) - repmat(dark_img,[1,1,block_length]);
mean_img = mean_img + sum(imgs,3);
end
mean_img = mean_img./sum(good_ind);
mean_img_reference = mean_img;
mean_img_reference_frame_num = sum(good_ind);
save(fullfile([meta.img_dir(1:end-3) '_mean_img.mat']),'mean_img','good_ind');
end
%% roi
roi_positions(:,1) = [1 1 200 200];
set(0,'CurrentFigure',f1);
for roi_ind = 1:size(roi_positions,2)
rectangle('Position',roi_positions(:,roi_ind));
end
pause(0.01);
%% get K2
block_size = 100;
disp([num2str(length(block_start)-1) ' blocks']);
K2_total_ROI = nan((length(block_start)-1)*block_size,size(roi_positions,2));
K2_fundamental_ROI = K2_total_ROI; K2_shot_ROI = K2_total_ROI;
K2_read_ROI = K2_total_ROI; K2_quantized_ROI = K2_total_ROI;
K2_spatial_ROI = K2_total_ROI;
cc_ROI = K2_total_ROI; cc_ROI_fit = K2_total_ROI;
for block=1:length(block_start)
if mod(block,5) == 1
disp(['Block # ' num2str(block)]);
end
time_ind = (block-1)*block_size + 1: block*block_size;
imgs = readHamamatsuH5(meta.img_dir,[time_ind(1) time_ind(end)]);
imgs = double(imgs)-repmat(dark_img,[1,1,block_size]);
for roi_ind = 1:size(roi_positions,2)
if mod(roi_ind,1e4) == 1
disp(['ROI # ' num2str(roi_ind) ' : ' char(datetime)]);
end
x_start_ROI = round(roi_positions(1,roi_ind));
x_end_ROI = round(roi_positions(1,roi_ind) + roi_positions(3,roi_ind) - 1);
y_start_ROI = round(roi_positions(2,roi_ind));
y_end_ROI = round(roi_positions(2,roi_ind) + roi_positions(4,roi_ind) - 1);
mask_ROI = mask(y_start_ROI:y_end_ROI,x_start_ROI:x_end_ROI);
if sum(mask_ROI) == 0
K2_fundamental_ROI(time_ind,roi_ind) = nan;
K2_total_ROI(time_ind,roi_ind) = nan;
K2_shot_ROI(time_ind,roi_ind) = nan;
K2_read_ROI(time_ind,roi_ind) = nan;
K2_quantized_ROI(time_ind,roi_ind) = nan;
K2_spatial_ROI(time_ind,roi_ind) = nan;
cc_ROI(time_ind,roi_ind) = nan;
else
imgs_ROI = imgs(y_start_ROI:y_end_ROI,x_start_ROI:x_end_ROI,:);
gain_ROI = gain(y_start_ROI:y_end_ROI,x_start_ROI:x_end_ROI);
dark_var_ROI = dark_var(y_start_ROI:y_end_ROI,x_start_ROI:x_end_ROI);
mean_img_ROI = mean_img_reference(y_start_ROI:y_end_ROI,x_start_ROI:x_end_ROI);
[K2_fundamental_ROI(time_ind,roi_ind),K2_total_ROI(time_ind,roi_ind),...
K2_shot_ROI(time_ind,roi_ind),K2_read_ROI(time_ind,roi_ind),...
K2_quantized_ROI(time_ind,roi_ind),K2_spatial_ROI(time_ind,roi_ind),...
cc_ROI(time_ind,roi_ind)] = ...
processImages(imgs_ROI,mask_ROI,gain_ROI,dark_var_ROI,mean_img_ROI,mean_img_reference_frame_num,...
meta.use_intensity_weight,meta.use_lsq_fit,window_size,true);
end
end
end
%% get auxilary data
try
stim_data=h5read(meta.aux_dir,'/DigitalIn_headers');
stim_time=double(stim_data.timestamp);
stim_time=stim_time(stim_time~=0)*1e-9; % in s
catch
stim_time = [];
end
t_stim=20;
disp('Saving...');
save(fullfile(fileparts(meta.img_dir),save_file),...
't','fr','good_ind','K2_total_ROI','K2_shot_ROI','K2_read_ROI',...
'K2_quantized_ROI','K2_spatial_ROI','K2_fundamental_ROI',...
'stim_time','t_stim','cc_ROI',...
'cc_mean','mean_img','mask',...
'roi_positions','window_size','gain','dark_var', ...
'mean_img_reference','meta');
%% plot figures
close all;
roi_ind = 1;
t_sub = t(1:numel(K2_total_ROI(:,roi_ind)));
x_lim = [min(t_sub) max(t_sub)];
[b,a] = butter(3,21/(fr/2),"low"); % 0.01 Hz to 0.5 Hz
var_I = filtfilt(b,a,K2_total_ROI(:,roi_ind)).*(filtfilt(b,a,cc_ROI(:,roi_ind)).^2);
figure;
subplot(2,1,1); plot(t_sub,sqrt(var_I),'LineWidth',1.5);
xlim(x_lim);
ylabel('\sigma(I)'); set(gca,'FontSize',18);
subplot(2,1,2); plot(t_sub,filtfilt(b,a,cc_ROI(:,roi_ind)),'LineWidth',1.5);
xlim(x_lim);
xlabel('t (s)');
ylabel('<I>'); set(gca,'FontSize',18);
Iall_smooth = smooth(filtfilt(b,a,cc_ROI(:,roi_ind)),fr);
f1 = figure;
plot(t_sub,cc_ROI(:,roi_ind)); hold on;
plot(t_sub,Iall_smooth,'LineWidth',2);
ylabel('Intensity (ADU)'); xlabel('t (s)')
xlim(x_lim);
set(gca,'FontSize',18)
legend('Intensity','Intensity (smoothed)');
f2 = figure;
plot(t_sub,filtfilt(b,a,K2_total_ROI(:,roi_ind)),'LineWidth',1); hold on;
plot(t_sub,filtfilt(b,a,K2_shot_ROI(:,roi_ind)),'LineWidth',1);
plot(t_sub,filtfilt(b,a,K2_read_ROI(:,roi_ind)),'LineWidth',1);
plot(t_sub,filtfilt(b,a,K2_quantized_ROI(:,roi_ind)),'LineWidth',1);
plot(t_sub,filtfilt(b,a,K2_spatial_ROI(:,roi_ind)),'LineWidth',1);
plot(t_sub,filtfilt(b,a,K2_fundamental_ROI(:,roi_ind)),'LineWidth',1);
ylabel('K^2');
xlabel('t (s)');
legend('K^2 total','K^2 shot','K^2 read','K^2 dig','K^2 spatial','K^2 fund')
xlim(x_lim);
set(gca,'FontSize',18);
f3 = figure;
subplot(2,1,1);
plot(t_sub,filtfilt(b,a,K2_fundamental_ROI(:,roi_ind)),'LineWidth',1.5);
ylabel('K_f^2');
xlabel('t (s)');
xlim(x_lim);
set(gca,'FontSize',18);
subplot(2,1,2);
plot(t_sub,filtfilt(b,a,1./K2_fundamental_ROI(:,roi_ind)),'LineWidth',1.5);
ylabel('BFi');
xlabel('t (s)');
xlim(x_lim);
set(gca,'FontSize',18);