-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathagent.py
152 lines (119 loc) · 5.77 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch
import torch.optim as optim
import torch.nn as nn
from torch.nn.utils import clip_grad_norm_
from networks import Critic, Actor, Value
class IQL(nn.Module):
def __init__(self,
state_size,
action_size,
learning_rate,
hidden_size,
tau,
temperature,
expectile,
device
):
super(IQL, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.device = device
self.gamma = torch.FloatTensor([0.99]).to(device)
self.tau = tau
hidden_size = hidden_size
learning_rate = learning_rate
self.clip_grad_param = 1
self.temperature = torch.FloatTensor([temperature]).to(device)
self.expectile = torch.FloatTensor([expectile]).to(device)
# Actor Network
self.actor_local = Actor(state_size, action_size, hidden_size).to(device)
self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=learning_rate)
# Critic Network (w/ Target Network)
self.critic1 = Critic(state_size, action_size, hidden_size, 2).to(device)
self.critic2 = Critic(state_size, action_size, hidden_size, 1).to(device)
assert self.critic1.parameters() != self.critic2.parameters()
self.critic1_target = Critic(state_size, action_size, hidden_size).to(device)
self.critic1_target.load_state_dict(self.critic1.state_dict())
self.critic2_target = Critic(state_size, action_size, hidden_size).to(device)
self.critic2_target.load_state_dict(self.critic2.state_dict())
self.critic1_optimizer = optim.Adam(self.critic1.parameters(), lr=learning_rate)
self.critic2_optimizer = optim.Adam(self.critic2.parameters(), lr=learning_rate)
self.value_net = Value(state_size=state_size, hidden_size=hidden_size).to(device)
self.value_optimizer = optim.Adam(self.value_net.parameters(), lr=learning_rate)
def get_action(self, state, eval=False):
"""Returns actions for given state as per current policy."""
state = torch.from_numpy(state).float().to(self.device)
with torch.no_grad():
if eval:
action = self.actor_local.get_det_action(state)
else:
action = self.actor_local.get_action(state)
return action.numpy()
def calc_policy_loss(self, states, actions):
with torch.no_grad():
v = self.value_net(states)
q1 = self.critic1_target(states, actions)
q2 = self.critic2_target(states, actions)
min_Q = torch.min(q1,q2)
exp_a = torch.exp((min_Q - v) * self.temperature)
exp_a = torch.min(exp_a, torch.FloatTensor([100.0]).to(states.device))
_, dist = self.actor_local.evaluate(states)
log_probs = dist.log_prob(actions)
actor_loss = -(exp_a * log_probs).mean()
return actor_loss
def calc_value_loss(self, states, actions):
with torch.no_grad():
q1 = self.critic1_target(states, actions)
q2 = self.critic2_target(states, actions)
min_Q = torch.min(q1,q2)
value = self.value_net(states)
value_loss = loss(min_Q - value, self.expectile).mean()
return value_loss
def calc_q_loss(self, states, actions, rewards, dones, next_states):
with torch.no_grad():
next_v = self.value_net(next_states)
q_target = rewards + (self.gamma * (1 - dones) * next_v)
q1 = self.critic1(states, actions)
q2 = self.critic2(states, actions)
critic1_loss = ((q1 - q_target)**2).mean()
critic2_loss = ((q2 - q_target)**2).mean()
return critic1_loss, critic2_loss
def learn(self, experiences):
states, actions, rewards, next_states, dones = experiences
self.value_optimizer.zero_grad()
value_loss = self.calc_value_loss(states, actions)
value_loss.backward()
self.value_optimizer.step()
actor_loss = self.calc_policy_loss(states, actions)
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
critic1_loss, critic2_loss = self.calc_q_loss(states, actions, rewards, dones, next_states)
# critic 1
self.critic1_optimizer.zero_grad()
critic1_loss.backward()
clip_grad_norm_(self.critic1.parameters(), self.clip_grad_param)
self.critic1_optimizer.step()
# critic 2
self.critic2_optimizer.zero_grad()
critic2_loss.backward()
clip_grad_norm_(self.critic2.parameters(), self.clip_grad_param)
self.critic2_optimizer.step()
# ----------------------- update target networks ----------------------- #
self.soft_update(self.critic1, self.critic1_target)
self.soft_update(self.critic2, self.critic2_target)
return actor_loss.item(), critic1_loss.item(), critic2_loss.item(), value_loss.item()
def soft_update(self, local_model , target_model):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model: PyTorch model (weights will be copied from)
target_model: PyTorch model (weights will be copied to)
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(self.tau*local_param.data + (1.0-self.tau)*target_param.data)
def loss(diff, expectile=0.8):
weight = torch.where(diff > 0, expectile, (1 - expectile))
return weight * (diff**2)