-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRBC2.mod
69 lines (65 loc) · 2.06 KB
/
RBC2.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
var
y ${Y}$ (long_name='Selling output')
c ${C}$ (long_name='Consumption')
ci ${Ci}$ (long_name='Consumption of agent i')
cj ${Cj}$ (long_name='Consumption of agent j ')
k ${K}$ (long_name='Capital')
ki ${Ki}$ (long_name='i agent Capital')
l ${L}$ (long_name='Labor')
li ${Li}$ (long_name='labor of i agent')
lj ${Lj}$ (long_name='labor of j agent')
a ${A}$ (long_name='Productivity')
r ${R}$ (long_name='Interest rate')
w ${W}$ (long_name='Real Wage')
Ii ${Ii}$ (long_name='Investment of agent i')
Iv ${Iv}$ (long_name='Total investment')
;
varexo
epsa ${\epsilon}$ (long_name='Epsilon')
;
% Parameters
parameters
BETA ${\alpha}$ (long_name='Discount factor')
ALPHA ${\alpha}$ (long_name='capital share')
DELTA ${\delta}$ (long_name='Controlling depreciations')
GAMMA ${\gamma}$ (long_name='Consumption utility parameter, labor dissutility parameter')
RHOA ${\rho}$ (long_name='Persistence parameter')
OMEGA ${\ommega}$ (long_name='share of non ricardian consumers')
;
% Calibrate parameters
BETA=0.9901;
ALPHA = 0.40;
DELTA = 0.025;
GAMMA = 0.7;
RHOA = 0.9;
OMEGA = 0.7;
% Model equations
model;
ki = (1 - DELTA)*ki(-1) + Ii; % S by s we entend specif to this model
c = OMEGA*ci + (1 - OMEGA)*cj; % S
l = OMEGA*li + (1 - OMEGA)*lj;% S
k = OMEGA*ki; %S
Iv = OMEGA*Ii;%S
log(a)=RHOA*log(a(-1))+epsa; %A
y = a*k(-1)^ALPHA*l^(1-ALPHA);% production function
y = c + Iv; %market clearing
ci= BETA*ci(-1)*(1-DELTA +r); %euler
cj=w*lj; % FOC
w=((1-GAMMA)/GAMMA)*(ci/(1-li));% FOC intratemporal optimality
w=(1-ALPHA)*(k(-1)/l)^ALPHA; % firms FOC
r=ALPHA*(l/k(-1))^(1-ALPHA); % firms FOC
w=((1-GAMMA)/GAMMA)*(cj/(1-lj)); %FOC intratemporal optimality
end;
initval;
a = 1;
r = (1/ALPHA)+DELTA-1;
ci=0.7;
cj=0.6;
li=0.2;
lj=0.3;
ki=12;
Ii=0.35;
w=3; %cj/lj
Ii=0.2;
end;
steady;