-
Notifications
You must be signed in to change notification settings - Fork 161
/
Copy pathaligner_driver.cpp
392 lines (380 loc) · 12.3 KB
/
aligner_driver.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
/*
* Copyright 2012, Ben Langmead <langmea@cs.jhu.edu>
*
* This file is part of Bowtie 2.
*
* Bowtie 2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Bowtie 2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Bowtie 2. If not, see <http://www.gnu.org/licenses/>.
*/
#include "aligner_driver.h"
void PrioritizedRootSelector::select(
const Read& q,
const Read* qo,
bool nofw,
bool norc,
EList<DescentConfig>& confs,
EList<DescentRoot>& roots)
{
assert_gt(landing_, 0);
// To specify a search root, we must specify an offset from the 5' end,
// whether it is left-to-right, and whether it searchers over the read or
// its reverse complement.
// Note that it's not very sensible to pick a search root going
// left-to-right but where its offset puts it very close to the
// right-hand-side of the read. I.e. that root will "bounce" almost
// immediately and go in the other direction.
// How to pick these roots? One idea is to simply lay down roots every N
// positions along the read and its reverse-complement. We would do this
// both for left-pointing and right-pointing roots.
// Another way is to consider every possible root, then rank them according
// to how optimistic we are that picking that root will be productive.
// Things that make us more optimistic are:
//
// 1. First several read characters to align are high quality
// 2. First several read characters to align are free of Ns
// 3. First several read characters do not form a simple repeat
// 4. First several k-mers are well represented both in other reads and in
// the reference genome
// 5. Characters, k-mers just before the root are "bad"
// 6. Root is flush with one end of the read or the other
// Go left-to-right along the forward and reverse-complement reads,
// compiling info about the nucleotides in the landing zone of each
// potential R2L root.
const int nPenalty = 150;
const int endBonus = 150;
const size_t qlen = q.length();
// Calculate interval length
int interval = rootIval_.f<int>((double)qlen);
size_t sizeTarget = qlen - landing_ + 1;
sizeTarget = (size_t)(ceilf((sizeTarget / (float)interval)));
sizeTarget *= 4;
// Set up initial score arrays
for(int i = 0; i < 2; i++) {
bool fw = (i == 0);
scoresOrig_[i].resize(qlen);
scores_[i].resize(qlen);
for(size_t j = 0; j < qlen; j++) {
size_t off5p = fw ? j : (qlen - j - 1);
int c = q.getc(off5p, fw);
int sc = q.getq(off5p) - ((c > 3) ? nPenalty : 0);
scoresOrig_[i][j] = scores_[i][j] = sc;
}
}
rootHeap_.clear();
for(int fwi = 0; fwi < 2; fwi++) {
bool fw = (fwi == 0);
if((fw && nofw) || (!fw && norc)) {
continue;
}
int pri = 0;
size_t revi = qlen;
for(size_t i = 0; i < qlen; i++) {
revi--;
pri += scoresOrig_[fwi][i];
if(i >= landing_) {
pri -= scoresOrig_[fwi][i - landing_];
}
if(i >= landing_-1 && scoresOrig_[fwi][i] > 0) {
rootHeap_.insert(DescentRoot(
fw ? i : revi, // offset from 5' end
false, // left-to-right?
fw, // fw?
landing_, // landing length
qlen, // query length
pri + ((revi == 0) ? endBonus : 0))); // root priority
// Give priority boost for being flush with one end or the
// other
}
}
pri = 0;
size_t i = qlen - revi;
for(size_t revi = 0; revi < qlen; revi++) {
i--;
pri += scoresOrig_[fwi][i];
if(revi >= landing_) {
pri -= scoresOrig_[fwi][i + landing_];
}
if(revi >= landing_-1 && scoresOrig_[fwi][i] > 0) {
rootHeap_.insert(DescentRoot(
fw ? i : revi, // offset from 5' end
true, // left-to-right?
fw, // fw?
landing_, // landing length
qlen, // query length
pri + ((i == 0) ? endBonus : 0))); // root priority
// Give priority boost for being flush with one end or the
// other
}
}
}
// Now that all the roots are in a heap, we select them one-by-one.
// Each time we select a root beyond the first, we check to see if an
// already-selected root's landing area overlaps. If so, we take away
// any benefit associated with the bases/qualities in the landing area
// and then push it back onto the heap if that changes its priority.
while(roots.size() < sizeTarget) {
if(rootHeap_.empty()) {
break;
}
DescentRoot r = rootHeap_.pop();
const size_t off = r.fw ? r.off5p : (qlen - r.off5p - 1);
int fwi = r.fw ? 0 : 1;
// Re-calculate priority
int pri = 0;
if(r.l2r) {
for(size_t i = 0; i < landing_; i++) {
pri += scores_[fwi][off + i];
}
} else {
for(size_t i = 0; i < landing_; i++) {
pri += scores_[fwi][off - i];
}
}
// Must take end bonus into account when re-calculating
if((r.l2r && (off == 0)) || (!r.l2r && (off == qlen - 1))) {
pri += endBonus;
}
if(pri == r.pri) {
// Update the positions in this root's landing area
if(r.l2r) {
for(size_t i = 0; i < landing_; i++) {
float frac = ((float)i / (float)landing_);
scores_[fwi][off + i] = (int)(scores_[fwi][off + i] * frac);
}
} else {
for(size_t i = 0; i < landing_; i++) {
float frac = ((float)i / (float)landing_);
scores_[fwi][off - i] = (int)(scores_[fwi][off - i] * frac);
}
}
confs.expand();
confs.back().cons.init(landing_, consExp_);
roots.push_back(r);
} else {
// Re-insert the root, its priority now changed
assert_gt(roots.size(), 0);
r.pri = pri;
rootHeap_.insert(r);
}
}
assert(!roots.empty());
//std::cerr << roots.size() << ", " << ncandidates << std::endl;
}
void IntervalRootSelector::select(
const Read& q,
const Read* qo,
bool nofw,
bool norc,
EList<DescentConfig>& confs,
EList<DescentRoot>& roots)
{
// To specify a search root, we must specify an offset from the 5' end,
// whether it is left-to-right, and whether it searchers over the read or
// its reverse complement.
// Note that it's not very sensible to pick a search root going
// left-to-right but where its offset puts it very close to the
// right-hand-side of the read. I.e. that root will "bounce" almost
// immediately and go in the other direction.
// How to pick these roots? One idea is to simply lay down roots every N
// positions along the read and its reverse-complement. That's what we do
// here.
// Calculate interval length for both mates
int interval = rootIval_.f<int>((double)q.length());
if(qo != NULL) {
// Boost interval length by 20% for paired-end reads
interval = (int)(interval * 1.2 + 0.5);
}
float pri = 0.0f;
for(int fwi = 0; fwi < 2; fwi++) {
bool fw = (fwi == 0);
if((fw && nofw) || (!fw && norc)) {
continue;
}
// Put down left-to-right roots w/r/t forward and reverse-complement reads
{
bool first = true;
size_t i = 0;
while(first || (i + landing_ <= q.length())) {
confs.expand();
confs.back().cons.init(landing_, consExp_);
roots.expand();
roots.back().init(
i, // offset from 5' end
true, // left-to-right?
fw, // fw?
1, // landing
q.length(), // query length
pri); // root priority
i += interval;
first = false;
}
}
// Put down right-to-left roots w/r/t forward and reverse-complement reads
{
bool first = true;
size_t i = 0;
while(first || (i + landing_ <= q.length())) {
confs.expand();
confs.back().cons.init(landing_, consExp_);
roots.expand();
roots.back().init(
q.length() - i - 1, // offset from 5' end
false, // left-to-right?
fw, // fw?
1, // landing
q.length(), // query length
pri); // root priority
i += interval;
first = false;
}
}
}
//std::cerr << roots.size() << std::endl;
}
/**
* Start the driver. The driver will begin by conducting a best-first,
* index-assisted search through the space of possible full and partial
* alignments. This search may be followed up with a dynamic programming
* extension step, taking a prioritized set of partial SA ranges found
* during the search and extending each with DP. The process might also be
* iterated, with the search being occasioanally halted so that DPs can be
* tried, then restarted, etc.
*/
int AlignerDriver::go(
const Scoring& sc,
const Ebwt& ebwtFw,
const Ebwt& ebwtBw,
const BitPairReference& ref,
DescentMetrics& met,
WalkMetrics& wlm,
PerReadMetrics& prm,
RandomSource& rnd,
AlnSinkWrap& sink)
{
if(paired_) {
// Paired-end - alternate between advancing dr1_ / dr2_ whenever a
// new full alignment is discovered in the one currently being
// advanced. Whenever a new full alignment is found, check to see
// if it pairs with a previously discovered alignment.
bool first1 = rnd.nextBool();
bool first = true;
DescentStoppingConditions stopc1 = stop_;
DescentStoppingConditions stopc2 = stop_;
size_t totszIncr = (stop_.totsz + 7) / 8;
stopc1.totsz = totszIncr;
stopc2.totsz = totszIncr;
while(stopc1.totsz <= stop_.totsz && stopc2.totsz <= stop_.totsz) {
if(first && first1 && stopc1.totsz <= stop_.totsz) {
dr1_.advance(stop_, sc, ebwtFw, ebwtBw, met, prm);
stopc1.totsz += totszIncr;
}
if(stopc2.totsz <= stop_.totsz) {
dr2_.advance(stop_, sc, ebwtFw, ebwtBw, met, prm);
stopc2.totsz += totszIncr;
}
first = false;
}
} else {
// Unpaired
size_t iter = 1;
while(true) {
int ret = dr1_.advance(stop_, sc, ebwtFw, ebwtBw, met, prm);
if(ret == DESCENT_DRIVER_ALN) {
cerr << iter << ". DESCENT_DRIVER_ALN" << endl;
} else if(ret == DESCENT_DRIVER_MEM) {
cerr << iter << ". DESCENT_DRIVER_MEM" << endl;
break;
} else if(ret == DESCENT_DRIVER_STRATA) {
// DESCENT_DRIVER_STRATA is returned by DescentDriver.advance()
// when it has finished with a "non-empty" stratum: a stratum
// in which at least one alignment was found. Here we report
// the alignments in an arbitrary order.
AlnRes res;
// Initialize alignment selector with the DescentDriver's
// alignment sink
alsel_.init(
dr1_.query(),
dr1_.sink(),
ebwtFw,
ref,
rnd,
wlm);
while(!alsel_.done() && !sink.state().doneWithMate(true)) {
res.reset();
bool ret2 = alsel_.next(
dr1_,
ebwtFw,
ref,
rnd,
res,
wlm,
prm);
if(ret2) {
// Got an alignment
assert(res.matchesRef(
dr1_.query(),
ref,
tmp_rf_,
tmp_rdseq_,
tmp_qseq_,
raw_refbuf_,
raw_destU32_,
raw_matches_));
// Get reference interval involved in alignment
Interval refival(res.refid(), 0, res.fw(), res.reflen());
assert_gt(res.refExtent(), 0);
// Does alignment falls off end of reference?
if(gReportOverhangs &&
!refival.containsIgnoreOrient(res.refival()))
{
res.clipOutside(true, 0, res.reflen());
if(res.refExtent() == 0) {
continue;
}
}
assert(gReportOverhangs ||
refival.containsIgnoreOrient(res.refival()));
// Alignment fell entirely outside the reference?
if(!refival.overlapsIgnoreOrient(res.refival())) {
continue; // yes, fell outside
}
// Alignment redundant with one we've seen previously?
if(red1_.overlap(res)) {
continue; // yes, redundant
}
red1_.add(res); // so we find subsequent redundancies
// Report an unpaired alignment
assert(!sink.state().doneWithMate(true));
assert(!sink.maxed());
if(sink.report(0, &res, NULL)) {
// Short-circuited because a limit, e.g. -k, -m or
// -M, was exceeded
return ALDRIVER_POLICY_FULFILLED;
}
}
}
dr1_.sink().advanceStratum();
} else if(ret == DESCENT_DRIVER_BWOPS) {
cerr << iter << ". DESCENT_DRIVER_BWOPS" << endl;
break;
} else if(ret == DESCENT_DRIVER_DONE) {
cerr << iter << ". DESCENT_DRIVER_DONE" << endl;
break;
} else {
assert(false);
}
iter++;
}
}
return ALDRIVER_EXHAUSTED_CANDIDATES;
}