-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtraphic_main.py
234 lines (184 loc) · 7.45 KB
/
traphic_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import argparse
import warnings
import re
import os
import csv
from model.model import TnpModel
from model.import_data import *
import time
warnings.filterwarnings("ignore")
''' IMPORTANT '''
DATASET = 'APOL'# Use Apolloscape dataset
LOG = './logs/'
LOAD = ''# Load the trained model
CUDA = True
DEVICE = 'cuda:0'
PREDALGO = 'Traphic'
PRETRAINEPOCHS= 0# Untill pretrained epoch
TRAINEPOCHS= 200# After pretrained epoch
INPUT = 6 #Trajectory sequence input
OUTPUT = 10#Trajectory sequence output for prediction
MANUAL_SEED = 42
TENSORBOARD = True#For using tensorboard
DATA_DIR = './data/' + DATASET
MODELLOC = "./TRAPHIC_weight/"
RAW_DATA = "./data/prediction_train/"
TRAIN = True
EVAL = True
# training option ========== Hyper-parameter ==========
BATCH_SIZE = 32
DROPOUT = 0.5
OPTIM= 'Adam'
# SGD Adam AdamW SparseAdam Adamax ASGD RMSprop Rprop
LEARNING_RATE= 0.001
MANEUVERS = False#Ben: TODO
PRETRAIN_LOSS = 'NLL'# Negative Log-Likelihood
TRAIN_LOSS = 'MSE'
NLL_ONLY = True
WEIGHT_DECAY = 1e-4
# Trained model name for saving
NAME = '{}.{}' + '.model_{}-{}l_{}epochs.seed{}.batch{}.nll_only.{}.tar'\
.format(INPUT, OUTPUT, PRETRAINEPOCHS + TRAINEPOCHS, MANUAL_SEED, BATCH_SIZE, NLL_ONLY)
GENERATE_DATASET = False
# If you want to generate a model for considering vehicle' only, "CLASS_TYPE = 'vehicle'",
# For any other class, there are {'bike/motor', 'human'}. For considering all class, just use 'all'
CLASS_TYPE = 'all' #(vehicle, 'bike/motor', 'human', 'all')
def apol_to_formatted(input_dir, files, output_dir, dtype):
txtlst = []
i = 0
sz = len(files)
print("=======================================")
for f in files:
print("Processing {}/{} in {}...".format(i, sz, dtype))
# print("files: ", f)
i += 1
splitted_name = f.split('_')
dset_id = splitted_name[1] + splitted_name[2].zfill(2)#for prediction_train,test.zip
out_name = dset_id + '.txt'
txtlst.append(dset_id)
current_time = -1
current_frame_num = -1
if not os.path.exists(output_dir):
os.mkdir(output_dir)
out = open(os.path.join(output_dir, out_name), 'w')
f = os.path.join(input_dir, f)
with open(f) as csv_file:
for row in csv.reader(csv_file):
each_row = row[0].split(' ')
current_frame_num = each_row[0]
vid_type = each_row[2]
vid = int(each_row[1].split('-')[-1])
out.write("{},{},{},{},{},{}\n".format(float(dset_id), vid, current_frame_num, each_row[3], each_row[4], vid_type))
return txtlst
def create_data(input_dir, file_names, output_dir, dtype, threadid, class_type):
name_lst = []
i = 0
sz = len(file_names)
for f in file_names:
print("Importing data {}/{} for {} in thread {}...".format(i, sz, dtype, threadid))
i += 1
dset_id = f
loc = os.path.join(input_dir,dset_id+'.txt')#from 'formated folder'; i.e. formated txt file
out = os.path.join(input_dir,dset_id+'.npy')
import_data(loc, None, out, class_type)
name_lst.append(out)
merge(name_lst, output_dir, dtype, threadid, class_type)
print('"merge" is finished!')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="traphicPred command line control")
parser.add_argument('--cuda', '-g', action='store_true', help='GPU option', default=CUDA)
parser.add_argument('--device', '-d', help='cuda device option', default=DEVICE, type=str)
parser.add_argument('--batch_size', '-b', help='bastch size', default=BATCH_SIZE)
parser.add_argument('--dropout', help='dropout probability', default=DROPOUT)
parser.add_argument('--lr', help='learning rate', default=LEARNING_RATE)
parser.add_argument('--optim', help='optimiser', default=OPTIM)
parser.add_argument('--w_decay', help='weight decay rate', default=WEIGHT_DECAY)
parser.add_argument('--pretrainEpochs', '-p', help='number of epochs for pretraining', default=PRETRAINEPOCHS, type=int)
parser.add_argument('--trainEpochs', '-e', help='number of epochs for training', default=TRAINEPOCHS, type=int)
parser.add_argument('--maneuvers', help='maneuvers option', default=MANEUVERS, type=bool)
parser.add_argument('--predalgo', help='prediction algorithm', default=PREDALGO)#TraPHic
parser.add_argument('--pretrain_loss', help='pretrain loss algorithm', default=PRETRAIN_LOSS)
parser.add_argument('--train_loss', help='train loss algorithm', default=TRAIN_LOSS)
parser.add_argument('--dset', '-s', help='cuda device option', default=DATASET, type=str)
parser.add_argument('--modelLoc', help='trained prediction store/load location', default=MODELLOC)
parser.add_argument('--dir', help="location of the dataset for tracking", default=DATA_DIR)
args = parser.parse_args()
viewArgs = {}
viewArgs['cuda'] = args.cuda
viewArgs['log_dir'] = LOG
viewArgs['batch_size'] = args.batch_size
viewArgs['dropout'] = args.dropout
viewArgs["lr"] = args.lr
viewArgs["optim"] = args.optim
viewArgs['w_decay'] = args.w_decay
viewArgs['pretrainEpochs'] = args.pretrainEpochs
viewArgs['trainEpochs'] = args.trainEpochs
viewArgs["maneuvers"] = args.maneuvers
viewArgs['predAlgo'] = args.predalgo
viewArgs['pretrain_loss'] = args.pretrain_loss
viewArgs['train_loss'] = args.train_loss
viewArgs['nll_only'] = NLL_ONLY
viewArgs['tensorboard'] = TENSORBOARD
viewArgs['modelLoc'] = args.modelLoc
viewArgs['dir'] = args.dir
viewArgs['raw_dir'] = RAW_DATA
if not args.cuda:
args.device = 'cpu'
viewArgs['device'] = args.device
viewArgs['dsId'] = MANUAL_SEED# It represents seed number, which means each different seed generates different (train, val, test) set
viewArgs['dset'] = args.dset
viewArgs['name_temp'] = NAME
viewArgs['input_size'] = INPUT
viewArgs['output_size'] = OUTPUT
viewArgs['class_type'] = CLASS_TYPE
if GENERATE_DATASET:
''' dataset ratio --> (train, val, test)==(0.7, 0.2, 0.1) '''
np.random.seed(MANUAL_SEED)
threadid = MANUAL_SEED
class_type = CLASS_TYPE
files = None
raw_data = os.listdir(RAW_DATA)
get_all_txtfile = [f for f in raw_data if '.txt' in f]
dataset_cnt = len(get_all_txtfile)# Ben: Get the number of all data in 'data_dirs'
datasets_dir = sorted(get_all_txtfile)
np.random.shuffle(datasets_dir)
datasets_for_train = datasets_dir[:int(dataset_cnt * 0.7)]
datasets_for_val = datasets_dir[int(dataset_cnt * 0.7):int(dataset_cnt * 0.9)]
datasets_for_test = datasets_dir[int(dataset_cnt * 0.9) :]
print('dataset is generated...')
train_loc = RAW_DATA
output_dir = RAW_DATA + '/train/formatted/'
files = datasets_for_train
train_lst = apol_to_formatted(train_loc, files, output_dir, "train")
create_data(output_dir, train_lst, args.dir, "train", threadid, class_type)
val_loc = RAW_DATA
output_dir = RAW_DATA + '/val/formatted/'
files = datasets_for_val
val_lst = apol_to_formatted(val_loc, files, output_dir, "val")
create_data(output_dir, val_lst, args.dir, "val", threadid, class_type)
test_loc = RAW_DATA
output_dir = RAW_DATA + '/test_obs/formatted/'
files = datasets_for_test
test_lst = apol_to_formatted(test_loc, files, output_dir, "test")
create_data(output_dir, test_lst, args.dir, "test", threadid, class_type)
quit()
print('using {} dataset.'.format(DATASET))
t0 = time.time()#ben: initialize time
model = TnpModel(viewArgs)
if args.cuda:
print("using cuda...\n")
else:
print("using cpu...\n")
if LOAD != '':
model.load(LOAD)
t1 = time.time()
if TRAIN:
model.train(viewArgs['dsId'])
t2 = time.time()
if EVAL:
model.evaluate()
t3 = time.time()
print('\nusing {} dataset.'.format(DATASET))
print('Loading time:{}'.format(t1 - t0))
print("Training time:{}".format(t2 - t1))
print("Testing time:{}".format(t3 - t2))