-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtema1_par.c
285 lines (225 loc) · 7.17 KB
/
tema1_par.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <pthread.h>
char *in_filename_julia;
char *in_filename_mandelbrot;
char *out_filename_julia;
char *out_filename_mandelbrot;
int no_threads;
// structura pentru un numar complex
typedef struct _complex {
double a;
double b;
} complex;
// structura pentru parametrii unei rulari
typedef struct _params {
int is_julia, iterations;
double x_min, x_max, y_min, y_max, resolution;
complex c_julia;
} params;
params algorithm_params;
typedef struct _result_params {
int width;
int height;
int **result;
pthread_barrier_t barrier;
} result_params;
result_params result_param;
// citeste argumentele programului
void get_args(int argc, char **argv)
{
if (argc < 6) {
printf("Numar insuficient de parametri:\n\t"
"./tema1 fisier_intrare_julia fisier_iesire_julia "
"fisier_intrare_mandelbrot fisier_iesire_mandelbrot P\n");
exit(1);
}
in_filename_julia = argv[1];
out_filename_julia = argv[2];
in_filename_mandelbrot = argv[3];
out_filename_mandelbrot = argv[4];
no_threads = atol(argv[5]);
}
// citeste fisierul de intrare
void read_input_file(char *in_filename, params* par)
{
FILE *file = fopen(in_filename, "r");
if (file == NULL) {
printf("Eroare la deschiderea fisierului de intrare!\n");
exit(1);
}
fscanf(file, "%d", &par->is_julia);
fscanf(file, "%lf %lf %lf %lf",
&par->x_min, &par->x_max, &par->y_min, &par->y_max);
fscanf(file, "%lf", &par->resolution);
fscanf(file, "%d", &par->iterations);
if (par->is_julia) {
fscanf(file, "%lf %lf", &par->c_julia.a, &par->c_julia.b);
}
fclose(file);
}
// scrie rezultatul in fisierul de iesire
void write_output_file(char *out_filename, int **result, int width, int height)
{
int i, j;
FILE *file = fopen(out_filename, "w");
if (file == NULL) {
printf("Eroare la deschiderea fisierului de iesire!\n");
return;
}
fprintf(file, "P2\n%d %d\n255\n", width, height);
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
fprintf(file, "%d ", result[i][j]);
}
fprintf(file, "\n");
}
fclose(file);
}
// aloca memorie pentru rezultat
int **allocate_memory(int width, int height)
{
int **result;
int i;
result = malloc(height * sizeof(int*));
if (result == NULL) {
printf("Eroare la malloc!\n");
exit(1);
}
for (i = 0; i < height; i++) {
result[i] = malloc(width * sizeof(int));
if (result[i] == NULL) {
printf("Eroare la malloc!\n");
exit(1);
}
}
return result;
}
// elibereaza memoria alocata
void free_memory(int **result, int height)
{
int i;
for (i = 0; i < height; i++) {
free(result[i]);
}
free(result);
}
// ruleaza algoritmul Julia
void run_julia(params *par, int **result, int width, int height, int thread_number)
{
int w, h;
for (w = thread_number; w < width; w+=no_threads) {
for (h = 0; h < height; h++) {
int step = 0;
complex z = { .a = w * par->resolution + par->x_min,
.b = h * par->resolution + par->y_min };
while (sqrt(pow(z.a, 2.0) + pow(z.b, 2.0)) < 2.0 && step < par->iterations) {
complex z_aux = { .a = z.a, .b = z.b };
z.a = pow(z_aux.a, 2) - pow(z_aux.b, 2) + par->c_julia.a;
z.b = 2 * z_aux.a * z_aux.b + par->c_julia.b;
step++;
}
// transforma rezultatul din coordonate matematice in coordonate ecran
result[height - h - 1][w] = step % 256;
}
}
}
// ruleaza algoritmul Mandelbrot
void run_mandelbrot(params *par, int **result, int width, int height, int thread_number)
{
int w, h;
for (w = thread_number; w < width; w+=no_threads) {
for (h = 0; h < height; h++) {
complex c = { .a = w * par->resolution + par->x_min,
.b = h * par->resolution + par->y_min };
complex z = { .a = 0, .b = 0 };
int step = 0;
while (sqrt(pow(z.a, 2.0) + pow(z.b, 2.0)) < 2.0 && step < par->iterations) {
complex z_aux = { .a = z.a, .b = z.b };
z.a = pow(z_aux.a, 2.0) - pow(z_aux.b, 2.0) + c.a;
z.b = 2.0 * z_aux.a * z_aux.b + c.b;
step++;
}
// transforma rezultatul din coordonate matematice in coordonate ecran
result[height - h - 1][w] = step % 256;
}
}
}
typedef struct _thread_params {
int current_thread_number;
} thread_params;
void* run_thread(void *thread_param) {
// Synchronisation point [0] - main threads has julia set params ready
thread_params current_params = *( (thread_params*) thread_param);
run_julia(&algorithm_params,
result_param.result,
result_param.width,
result_param.height,
current_params.current_thread_number);
// Synchronisation point [1] - signal the main thread that workers computed julia set
pthread_barrier_wait(&result_param.barrier);
// Synchronisation point [2] - wait for the main thread to finish loading mandelbrot params
pthread_barrier_wait(&result_param.barrier);
run_mandelbrot(&algorithm_params,
result_param.result,
result_param.width,
result_param.height,
current_params.current_thread_number);
// Synchronisation point [3] - finished computing mandelbrot
return NULL;
}
int main(int argc, char *argv[])
{
int width, height;
int **result;
// se citesc argumentele programului
get_args(argc, argv);
// Julia:
// - se citesc parametrii de intrare
// - se aloca tabloul cu rezultatul
// - se ruleaza algoritmul
// - se scrie rezultatul in fisierul de iesire
// - se elibereaza memoria alocata
read_input_file(in_filename_julia, &algorithm_params);
width = (algorithm_params.x_max - algorithm_params.x_min) / algorithm_params.resolution;
height = (algorithm_params.y_max - algorithm_params.y_min) / algorithm_params.resolution;
result = allocate_memory(width, height);
result_param.width = width;
result_param.height = height;
result_param.result = result;
pthread_t* ids = malloc(sizeof(pthread_t) * no_threads);
thread_params* thread_params = malloc(sizeof(struct _thread_params) * no_threads);
pthread_barrier_init(&result_param.barrier, NULL, no_threads + 1);
// Synchronisation point [0] - main threads has julia set params ready, start workers
for (int i=0; i < no_threads; i++) {
thread_params[i].current_thread_number = i;
pthread_create(&ids[i], NULL, run_thread, &thread_params[i]);
}
// Synchronisation point [1] - wait for all threads to finish julia set
pthread_barrier_wait(&result_param.barrier);
write_output_file(out_filename_julia, result, width, height);
free_memory(result, height);
// Mandelbrot:
// - se citesc parametrii de intrare
// - se aloca tabloul cu rezultatul
// - se ruleaza algoritmul
// - se scrie rezultatul in fisierul de iesire
// - se elibereaza memoria alocata
read_input_file(in_filename_mandelbrot, &algorithm_params);
width = (algorithm_params.x_max - algorithm_params.x_min) / algorithm_params.resolution;
height = (algorithm_params.y_max - algorithm_params.y_min) / algorithm_params.resolution;
result = allocate_memory(width, height);
result_param.width = width;
result_param.height = height;
result_param.result = result;
// Synchronisation point [2] - Signal threads to start computing the mandelbrot set
pthread_barrier_wait(&result_param.barrier);
// Synchronisation point [3] - Finished computing mandelbrot
for (int i=0; i < no_threads; i++) {
pthread_join(ids[i], NULL);
}
write_output_file(out_filename_mandelbrot, result, width, height);
free_memory(result, height);
return 0;
}