-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtools_wapper.py
209 lines (154 loc) · 5.56 KB
/
tools_wapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
class Seg(object):
"""docstring for Seg"""
def __init__(self, mode='seg'):
super(Seg, self).__init__()
self.mode = mode
self.cutter = self.impl_func
def cut(self, sentence):
return self.cutter(sentence)
def impl_func(self, sentence):
return None
class lac_impl(Seg):
def __init__(self, mode='seg'):
super().__init__(mode)
from LAC import LAC
if mode == 'seg':
self.lac = LAC(mode='seg')
self.cutter = self.lac.run
else:
self.lac = LAC()
self.cutter = self.impl_func
def impl_func(self, sentence):
words, tags = self.lac.run(sentence)
return [(word, tag) for word, tag in zip(words, tags)]
class jieba_impl(Seg):
def __init__(self, mode='seg'):
super().__init__(mode)
if mode == 'seg':
import jieba
self.cutter = jieba.lcut
else:
import jieba.posseg as posseg
self.cutter = posseg.lcut
self.cutter("")
class pkuseg_impl(Seg):
def __init__(self, mode='seg'):
super().__init__(mode)
import pkuseg
if mode == 'seg':
self.pkuseg = pkuseg.pkuseg()
else:
self.pkuseg = pkuseg.pkuseg(postag=True)
self.cutter = self.pkuseg.cut
class thulac_impl(Seg):
def __init__(self, mode='seg'):
super().__init__(mode)
import thulac
if mode == 'seg':
self.thulac = thulac.thulac(seg_only=True)
else:
self.thulac = thulac.thulac()
# self.cutter = self.impl_func
def impl_func(self, sentence):
if self.mode == 'seg':
return [word[0] for word in self.thulac.cut(sentence)]
else:
return self.thulac.cut(sentence)
class pynlpir_impl(Seg):
def __init__(self, mode='seg'):
super().__init__(mode)
import pynlpir
self.pynlpir = pynlpir
self.pynlpir.open()
def impl_func(self, sentence):
if self.mode == 'seg':
return self.pynlpir.segment(sentence, pos_tagging=False)
elif self.mode == 'postag':
return self.pynlpir.segment(sentence)
else:
return self.pynlpir.segment(sentence, pos_names='all')
# def __del__(self):
# self.pynlpir.close()
class pyhanlp_impl(Seg):
def __init__(self, mode='seg'):
super().__init__(mode)
from pyhanlp import HanLP
self.hanlp = HanLP
# self.cut = self.impl_func
def impl_func(self, sentence):
res = self.hanlp.segment(sentence)
if self.mode == 'seg':
return [str(term.word) for term in res]
else:
return [(str(term.word), str(term.nature)) for term in res]
class foolnltk_impl(Seg):
def __init__(self, mode='seg'):
super().__init__(mode)
import fool
self.fool = fool
# self.cut = self.impl_func
def impl_func(self, sentence):
if self.mode == 'seg':
return self.fool.cut([sentence])
elif self.mode == 'postag':
return self.fool.pos_cut([sentence])[0]
else:
return self.fool.analysis([sentence])[0]
class snownlp_impl(Seg):
def __init__(self, mode='seg'):
super().__init__(mode)
from snownlp import SnowNLP
self.snownlp = SnowNLP
# self.cut = self.impl_func
def impl_func(self, sentence):
snow_res = self.snownlp(sentence)
if self.mode == 'seg':
return list(snow_res.words)
else:
return list(snow_res.tags)
class standfordnlp_impl(Seg):
def __init__(self, dictpath, mode='seg'):
super().__init__(mode)
from stanfordcorenlp import StanfordCoreNLP
self.standfornlp = StanfordCoreNLP(dictpath, lang='zh')
if mode == 'seg':
self.cut = self.standfornlp.word_tokenize
elif mode == 'postag':
self.cut = self.standfornlp.pos_tag
else:
self.cut = self.standfornlp.ner
class pyltp_impl(Seg):
def __init__(self, dictpath, mode='seg'):
super().__init__(mode)
from pyltp import Segmentor
from pyltp import Postagger
from pyltp import NamedEntityRecognizer
self.ltp_seg = Segmentor()
self.ltp_pos = Postagger()
self.ltp_ner = NamedEntityRecognizer()
self.ltp_seg.load(os.path.join(dictpath, 'cws.model'))
if mode != 'seg':
self.ltp_pos.load(os.path.join(dictpath, 'pos.model'))
if mode == 'ner':
self.ltp_ner.load(os.path.join(dictpath, 'ner.model'))
def impl_func(self, sentence):
seg_res = self.ltp_seg.segment(sentence)
if self.mode == 'seg':
return seg_res
pos_res = self.ltp_pos.postag(seg_res)
if self.mode == 'postag':
return [(word, tag) for (word, tag) in zip(seg_res, pos_res)]
ner_res = self.ltp_ner.recognize(seg_res, pos_res)
return [(word, tag) for (word, tag) in zip(seg_res, ner_res)]
if __name__ == '__main__':
names = ['pynlpir', 'thulac', 'pyhanlp']
for name in names:
# cutter = globals()[name + "_impl"]()
cutter = eval(name + "_impl")()
print(name, 'cutter', cutter.cut("我来自中山大学"))
print(name, 'cutter', cutter.cut("百度是家高科技公司"))
# tagger = globals()[name + "_impl"]("postag")
tagger = eval(name + "_impl")("postag")
print(name, 'tagger', tagger.cut("我来自中山大学"))
print(name, 'tagger', tagger.cut("百度是家高科技公司"))