-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembed_orig_task2vec.py
352 lines (310 loc) · 16.4 KB
/
embed_orig_task2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
# Copyright 2017-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
import itertools
import math
from abc import ABC, abstractmethod
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from tqdm.auto import tqdm
import logging
import variational
from torch.utils.data import DataLoader, Dataset
from torch.optim.optimizer import Optimizer
from utils import AverageMeter, get_error, get_device
class Embedding:
def __init__(self, hessian, scale, meta=None):
self.hessian = np.array(hessian)
self.scale = np.array(scale)
self.meta = meta
class ProbeNetwork(ABC, nn.Module):
"""Abstract class that all probe networks should inherit from.
This is a standard torch.nn.Module but needs to expose a classifier property that returns the final classicifation
module (e.g., the last fully connected layer).
"""
@property
@abstractmethod
def classifier(self):
raise NotImplementedError("Override the classifier property to return the submodules of the network that"
" should be interpreted as the classifier")
@classifier.setter
@abstractmethod
def classifier(self, val):
raise NotImplementedError("Override the classifier setter to set the submodules of the network that"
" should be interpreted as the classifier")
class Task2Vec:
def __init__(self, model: ProbeNetwork, skip_layers=0, max_samples=None, classifier_opts=None,
method='montecarlo', method_opts=None, loader_opts=None, bernoulli=False):
if classifier_opts is None:
classifier_opts = {}
if method_opts is None:
method_opts = {}
if loader_opts is None:
loader_opts = {}
assert method in ('variational', 'montecarlo')
assert skip_layers >= 0
self.model = model
# Fix batch norm running statistics (i.e., put batch_norm layers in eval mode)
self.model.train()
self.device = get_device(self.model)
self.skip_layers = skip_layers
self.max_samples = max_samples
self.classifier_opts = classifier_opts
self.method = method
self.method_opts = method_opts
self.loader_opts = loader_opts
self.bernoulli = bernoulli
self.loss_fn = nn.CrossEntropyLoss() if not self.bernoulli else nn.BCEWithLogitsLoss()
self.loss_fn = self.loss_fn.to(self.device)
def embed(self, dataset: Dataset):
# Cache the last layer features (needed to train the classifier) and (if needed) the intermediate layer features
# so that we can skip the initial layers when computing the embedding
if self.skip_layers > 0:
self._cache_features(dataset, indexes=(self.skip_layers, -1), loader_opts=self.loader_opts,
max_samples=self.max_samples)
else:
self._cache_features(dataset, max_samples=self.max_samples)
# Fits the last layer classifier using cached features
self._fit_classifier(**self.classifier_opts)
if self.skip_layers > 0:
dataset = torch.utils.data.TensorDataset(self.model.layers[self.skip_layers].input_features,
self.model.layers[-1].targets)
self.compute_fisher(dataset)
embedding = self.extract_embedding(self.model)
return embedding
def montecarlo_fisher(self, dataset: Dataset, epochs: int = 1):
logging.info("Using montecarlo Fisher")
if self.skip_layers > 0:
dataset = torch.utils.data.TensorDataset(self.model.layers[self.skip_layers].input_features,
self.model.layers[-1].targets)
data_loader = _get_loader(dataset, **self.loader_opts)
device = get_device(self.model)
logging.info("Computing Fisher...")
for p in self.model.parameters():
p.grad2_acc = torch.zeros_like(p.data)
p.grad_counter = 0
for k in range(epochs):
logging.info(f"\tepoch {k + 1}/{epochs}")
for i, (data, target) in enumerate(tqdm(data_loader, leave=False, desc="Computing Fisher")):
data = data.to(device)
output = self.model(data, start_from=self.skip_layers)
# The gradients used to compute the FIM needs to be for y sampled from
# the model distribution y ~ p_w(y|x), not for y from the dataset
if self.bernoulli:
target = torch.bernoulli(F.sigmoid(output)).detach()
else:
target = torch.multinomial(F.softmax(output, dim=-1), 1).detach().view(-1)
loss = self.loss_fn(output, target)
self.model.zero_grad()
loss.backward()
for p in self.model.parameters():
if p.grad is not None:
p.grad2_acc += p.grad.data ** 2
p.grad_counter += 1
for p in self.model.parameters():
if p.grad_counter == 0:
del p.grad2_acc
else:
p.grad2_acc /= p.grad_counter
logging.info("done")
def _run_epoch(self, data_loader: DataLoader, model: ProbeNetwork, loss_fn,
optimizer: Optimizer, epoch: int, train: bool = True,
add_compression_loss: bool = False, skip_layers=0, beta=1.0e-7):
metrics = AverageMeter()
device = get_device(model)
for i, (input, target) in enumerate(tqdm(data_loader, leave=False, desc="Computing Fisher")):
input = input.to(device)
target = target.to(device)
output = model(input, start_from=skip_layers)
loss = loss_fn(output, target)
lz = beta * variational.get_compression_loss(model) if add_compression_loss else torch.zeros_like(loss)
loss += lz
error = get_error(output, target)
metrics.update(n=input.size(0), loss=loss.item(), lz=lz.item(), error=error)
if train:
optimizer.zero_grad()
loss.backward()
optimizer.step()
# logging.info(
print(
"{}: [{epoch}] ".format('Epoch' if train else '', epoch=epoch) +
"Data/Batch: {:.3f}/{:.3f} ".format(metrics.avg["data_time"], metrics.avg["batch_time"]) +
"Loss {:.3f} Lz: {:.3f} ".format(metrics.avg["loss"], metrics.avg["lz"]) +
"Error: {:.2f}".format(metrics.avg["error"])
)
return metrics.avg
def variational_fisher(self, dataset: Dataset, epochs=1, var_epochs=1, beta=1e-7):
logging.info("Training variational fisher...")
parameters = []
for layer in self.model.layers[self.skip_layers:-1]:
if isinstance(layer, nn.Module): # Skip lambda functions
variational.make_variational(layer)
parameters += variational.get_variational_vars(layer)
bn_params = []
# Allows batchnorm parameters to change
for m in self.model.modules():
if isinstance(m, nn.BatchNorm2d):
bn_params += list(m.parameters())
# Avoids computing the gradients wrt to the weights to save time and memory
for p in self.model.parameters():
if p not in set(parameters) and p not in set(self.model.classifier.parameters()):
p.old_requires_grad = p.requires_grad
p.requires_grad = False
optimizer = torch.optim.Adam([
{'params': parameters},
{'params': bn_params, 'lr': 5e-4},
{'params': self.model.classifier.parameters(), 'lr': 5e-4}],
lr=1e-2, betas=(.9, 0.999))
if self.skip_layers > 0:
dataset = torch.utils.data.TensorDataset(self.model.layers[self.skip_layers].input_features,
self.model.layers[-1].targets)
# Loader opts is empty
print(type(self.model))
train_loader = _get_loader(dataset, **self.loader_opts)
for epoch in range(var_epochs):
self._run_epoch(train_loader, self.model, self.loss_fn, optimizer, epoch, beta=beta,
add_compression_loss=True, train=True)
# Resets original value of requires_grad
for p in self.model.parameters():
if hasattr(p, 'old_requires_grad'):
p.requires_grad = p.old_requires_grad
del p.old_requires_grad
def compute_fisher(self, dataset: Dataset):
"""
Computes the Fisher Information of the weights of the model wrt the model output on the dataset and stores it.
The Fisher Information Matrix is defined as:
F = E_{x ~ dataset} E_{y ~ p_w(y|x)} [\nabla_w log p_w(y|x) \nabla_w log p_w(y|x)^t]
where p_w(y|x) is the output probability vector of the network and w are the weights of the network.
Notice that the label y is sampled from the model output distribution and not from the dataset.
This code only approximate the diagonal of F. The result is stored in the model layers and can be extracted
using the `get_fisher` method. Different approximation methods of the Fisher information matrix are available,
and can be selected in the __init__.
:param dataset: dataset with the task to compute the Fisher on
"""
if self.method == 'variational':
fisher_fn = self.variational_fisher
elif self.method == 'montecarlo':
fisher_fn = self.montecarlo_fisher
else:
raise ValueError(f"Invalid Fisher method {self.method}")
print(self.method_opts)
fisher_fn(dataset, **self.method_opts)
def _cache_features(self, dataset: Dataset, indexes=(-1,), max_samples=None, loader_opts: dict = None):
logging.info("Caching features...")
if loader_opts is None:
loader_opts = {}
data_loader = torch.utils.data.DataLoader(dataset, shuffle=False, batch_size=loader_opts.get('batch_size', 128),
num_workers=loader_opts.get('num_workers', 6), drop_last=False)
device = next(self.model.parameters()).device
def _hook(layer, inputs):
if not hasattr(layer, 'input_features'):
layer.input_features = []
layer.input_features.append(inputs[0].data.cpu().clone())
hooks = [self.model.layers[index].register_forward_pre_hook(_hook)
for index in indexes]
if max_samples is not None:
n_batches = min(
math.floor(max_samples / data_loader.batch_size) - 1, len(data_loader))
else:
n_batches = len(data_loader)
targets = []
for i, (input, target) in tqdm(enumerate(itertools.islice(data_loader, 0, n_batches)), total=n_batches,
leave=False,
desc="Caching features"):
targets.append(target.clone())
self.model(input.to(device))
for hook in hooks:
hook.remove()
for index in indexes:
self.model.layers[index].input_features = torch.cat(self.model.layers[index].input_features)
self.model.layers[-1].targets = torch.cat(targets)
def _fit_classifier(self, optimizer='adam', learning_rate=0.0004, weight_decay=0.0001,
epochs=10):
"""Fits the last layer of the network using the cached features."""
logging.info("Fitting final classifier...")
if not hasattr(self.model.classifier, 'input_features'):
raise ValueError("You need to run `cache_features` on model before running `fit_classifier`")
targets = self.model.classifier.targets.to(self.device)
features = self.model.classifier.input_features.to(self.device)
dataset = torch.utils.data.TensorDataset(features, targets)
data_loader = _get_loader(dataset, **self.loader_opts)
if optimizer == 'adam':
optimizer = torch.optim.Adam(self.model.fc.parameters(), lr=learning_rate, weight_decay=weight_decay)
elif optimizer == 'sgd':
optimizer = torch.optim.SGD(self.model.fc.parameters(), lr=learning_rate, weight_decay=weight_decay)
else:
raise ValueError(f'Unsupported optimizer {optimizer}')
loss_fn = nn.CrossEntropyLoss()
for epoch in tqdm(range(epochs), desc="Fitting classifier", leave=False):
metrics = AverageMeter()
for data, target in data_loader:
optimizer.zero_grad()
output = self.model.classifier(data)
loss = loss_fn(self.model.classifier(data), target)
error = get_error(output, target)
loss.backward()
optimizer.step()
metrics.update(n=data.size(0), loss=loss.item(), error=error)
logging.info(f"[epoch {epoch}]: " + "\t".join(f"{k}: {v}" for k, v in metrics.avg.items()))
def extract_embedding(self, model: ProbeNetwork):
"""
Reads the values stored by `compute_fisher` and returns them in a common format that describes the diagonal of the
Fisher Information Matrix for each layer.
:param model:
:return:
"""
hess, scale = [], []
for name, module in model.named_modules():
if module is model.classifier:
continue
# The variational Fisher approximation estimates the variance of noise that can be added to the weights
# without increasing the error more than a threshold. The inverse of this is proportional to an
# approximation of the hessian in the local minimum.
if hasattr(module, 'logvar0') and hasattr(module, 'loglambda2'):
logvar = module.logvar0.view(-1).detach().cpu().numpy()
hess.append(np.exp(-logvar))
loglambda2 = module.loglambda2.detach().cpu().numpy()
scale.append(np.exp(-loglambda2).repeat(logvar.size))
# The other Fisher approximation methods directly approximate the hessian at the minimum
elif hasattr(module, 'weight') and hasattr(module.weight, 'grad2_acc'):
grad2 = module.weight.grad2_acc.cpu().detach().numpy()
filterwise_hess = grad2.reshape(grad2.shape[0], -1).mean(axis=1)
hess.append(filterwise_hess)
scale.append(np.ones_like(filterwise_hess))
return Embedding(hessian=np.concatenate(hess), scale=np.concatenate(scale), meta=None)
def _get_loader(trainset, testset=None, batch_size=128, num_workers=6, num_samples=10000, drop_last=True):
if getattr(trainset, 'is_multi_label', False):
raise ValueError("Multi-label datasets not supported")
if hasattr(trainset, 'labels'):
labels = trainset.labels
elif hasattr(trainset, 'targets'):
labels = trainset.targets
else:
labels = list(trainset.tensors[1].cpu().numpy())
num_classes = int(getattr(trainset, 'num_classes', max(labels) + 1))
class_count = np.eye(num_classes)[labels].sum(axis=0)
weights = 1. / class_count[labels] / num_classes
weights /= weights.sum()
sampler = torch.utils.data.sampler.WeightedRandomSampler(weights, num_samples=num_samples)
# No need for mutli-threaded loading if everything is already in memory,
# and would raise an error if TensorDataset is on CUDA
num_workers = num_workers if not isinstance(trainset, torch.utils.data.TensorDataset) else 0
trainloader = torch.utils.data.DataLoader(trainset, sampler=sampler, batch_size=batch_size,
num_workers=num_workers, drop_last=drop_last)
if testset is None:
return trainloader
else:
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, pin_memory=True, shuffle=False,
num_workers=num_workers)
return trainloader, testloader