forked from kaist-amsg/LocalRetro
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRetrosynthesis.py
94 lines (81 loc) · 4.66 KB
/
Retrosynthesis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import json
import pandas as pd
import torch
from torch import nn
import sklearn
from rdkit.Chem import PandasTools, AllChem
import dgl
from dgllife.utils import smiles_to_bigraph, WeaveAtomFeaturizer, CanonicalBondFeaturizer
from functools import partial
from scripts.utils import init_featurizer, load_model, collate_molgraphs_test
from scripts.get_edit import combined_edit
from LocalTemplate.template_decoder import *
def predict(model, graph, device):
bg = dgl.batch([graph])
bg.set_n_initializer(dgl.init.zero_initializer)
bg.set_e_initializer(dgl.init.zero_initializer)
bg = bg.to(device)
node_feats = bg.ndata.pop('h').to(device)
edge_feats = bg.edata.pop('e').to(device)
return model(bg, node_feats, edge_feats)
def load_templates(args):
atom_templates = pd.read_csv('%s/atom_templates.csv' % args['data_dir'])
bond_templates = pd.read_csv('%s/bond_templates.csv' % args['data_dir'])
template_infos = pd.read_csv('%s/template_infos.csv' % args['data_dir'])
atom_templates = {atom_templates['Class'][i]: atom_templates['Template'][i] for i in atom_templates.index}
bond_templates = {bond_templates['Class'][i]: bond_templates['Template'][i] for i in bond_templates.index}
template_infos = {template_infos['Template'][i]: {'edit_site': eval(template_infos['edit_site'][i]), 'change_H': eval(template_infos['change_H'][i]), 'change_C': eval(template_infos['change_C'][i]), 'change_S': eval(template_infos['change_S'][i])} for i in template_infos.index}
return atom_templates, bond_templates, template_infos
def init_LocalRetro(args):
args['mode'] = 'test'
args = init_featurizer(args)
model = load_model(args)
atom_templates, bond_templates, template_infos = load_templates(args)
smiles_to_graph = partial(smiles_to_bigraph, add_self_loop=True)
atom_types = ['C', 'N', 'O', 'S', 'F', 'Si', 'P', 'Cl', 'Br', 'Mg', 'Na', 'Ca', 'Fe',
'As', 'Al', 'I', 'B', 'V', 'K', 'Tl', 'Yb', 'Sb', 'Sn', 'Ag', 'Pd', 'Co', 'Se', 'Ti',
'Zn', 'H', 'Li', 'Ge', 'Cu', 'Au', 'Ni', 'Cd', 'In', 'Mn', 'Zr', 'Cr', 'Pt', 'Hg', 'Pb',
'W', 'Ru', 'Nb', 'Re', 'Te', 'Rh', 'Ta', 'Tc', 'Ba', 'Bi', 'Hf', 'Mo', 'U', 'Sm', 'Os', 'Ir',
'Ce', 'Gd', 'Ga', 'Cs']
node_featurizer = WeaveAtomFeaturizer(atom_types = atom_types)
edge_featurizer = CanonicalBondFeaturizer(self_loop=True)
graph_function = lambda s: smiles_to_graph(s, node_featurizer = node_featurizer, edge_featurizer = edge_featurizer, canonical_atom_order = False)
return model, graph_function, atom_templates, bond_templates, template_infos
def remap(mol):
for atom in mol.GetAtoms():
atom.SetAtomMapNum(atom.GetIdx())
def retrosnythesis(smiles, model, graph_function, device, atom_templates, bond_templates, template_infos, top_k = 10, verbose = False):
model.eval()
graph = graph_function(smiles)
with torch.no_grad():
atom_logits, bond_logits, _ = predict(model, graph, device)
atom_logits = nn.Softmax(dim=1)(atom_logits)
bond_logits = nn.Softmax(dim=1)(bond_logits)
graph = graph.remove_self_loop()
pred_types, pred_sites, pred_scores = combined_edit(graph, atom_logits, bond_logits, top_k)
predictions = [(pred_types[k], pred_sites[k][0], pred_sites[k][1], pred_scores[k]) for k in range(top_k)]
predicted_reactants = [smiles]
predicted_sites = [None]
predicted_templates = [None]
predicted_scores = [None]
for k, prediction in enumerate(predictions):
mol, pred_site, template, template_info, score = read_prediction(smiles, prediction, atom_templates, bond_templates, template_infos, True)
local_template = '>>'.join(['(%s)' % smarts for smarts in template.split('_')[0].split('>>')])
decoded_smiles = decode_localtemplate(mol, pred_site, local_template, template_info)
if verbose:
print ('top %s' % (k+1), pred_site, local_template, score)
try:
decoded_smiles = decode_localtemplate(mol, pred_site, local_template, template_info)
if decoded_smiles == None or decoded_smiles in predicted_reactants:
continue
except Exception as e:
print (e)
continue
predicted_sites.append(pred_site)
predicted_reactants.append(decoded_smiles)
predicted_templates.append(local_template)
predicted_scores.append(score)
results_df = pd.DataFrame({'SMILES': predicted_reactants, 'Predicted site': predicted_sites, 'Local reaction template': predicted_templates, 'Score': predicted_scores})
PandasTools.AddMoleculeColumnToFrame(results_df,'SMILES','Molecule')
remap(results_df['Molecule'][0])
return results_df