
Online Neural Denoising with Cross-Regression for Interactive Rendering

HAJIN CHOI, Gwangju Institute of Science and Technology, South Korea

SEOKPYO HONG, Samsung Advanced Institute of Technology, South Korea

INWOO HA, Samsung Advanced Institute of Technology, South Korea and KAIST, South Korea

NAHYUP KANG, Samsung Advanced Institute of Technology, South Korea

BOCHANG MOON, Gwangju Institute of Science and Technology, South Korea

(a) ReSTIR PT (b) BMFR (c) Ours (d) Reference

(e) ReSTIR PT (f) BMFR

(g) Ours (h) Reference

Fig. 1. Denoising results of a regression-based denoiser (BMFR [Koskela et al. 2019]) and our method for an interactive path tracing framework (ReSTIR

PT [Lin et al. 2022]). While the existing regression using G-buffers, e.g., textures and normals, preserves geometric edges, it tends to blur other image details

(e.g., shadows) that the G-buffers cannot capture. We present a hybrid denoising framework that employs local regression with a neural network for robust

denoising capable of maintaining such non-geometric edges. We modify the regression into a cross-regression form to generate pilot estimates, which serve as

input to our neural network and guide its online training using only runtime image sequences. 3D model courtesy of [Lumberyard 2017].

Generating a rendered image sequence through Monte Carlo ray tracing is
an appealing option when one aims to accurately simulate various lighting
effects. Unfortunately, interactive rendering scenarios limit the allowable
sample size for such sampling-based light transport algorithms, resulting in
an unbiased but noisy image sequence. Image denoising has been widely
adopted as a post-sampling process to convert such noisy image sequences
into biased but temporally stable ones. The state-of-the-art strategy for inter-
active image denoising involves devising a deep neural network and training
this network via supervised learning, i.e., optimizing the network parameters
using training datasets that include an extensive set of image pairs (noisy
and ground truth images). This paper adopts the prevalent approach for
interactive image denoising, which relies on a neural network. However,
instead of supervised learning, we propose a different learning strategy that
trains our network parameters on the fly, i.e., updating them online using
runtime image sequences. To achieve our denoising objective with online
learning, we tailor local regression to a cross-regression form that can guide

Authors’ Contact Information: Hajin Choi, Gwangju Institute of Science and Technology,
Gwangju, South Korea, hajinchoi@gm.gist.ac.kr; Seokpyo Hong, Samsung Advanced
Institute of Technology, Suwon, South Korea, sphorpin89@gmail.com; Inwoo Ha, Sam-
sung Advanced Institute of Technology, Suwon, South Korea and KAIST, Dajeon, South
Korea, inwooh3@gmail.com; Nahyup Kang, Samsung Advanced Institute of Technology,
Suwon, South Korea, nahyup.kang@samsung.com; Bochang Moon, Gwangju Institute
of Science and Technology, Gwangju, South Korea, bmoon@gist.ac.kr.

© 2024 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3687938.

robust training of our denoising neural network. We demonstrate that our
denoising framework effectively reduces noise in input image sequences
while robustly preserving both geometric and non-geometric edges, without
requiring the manual effort involved in preparing an external dataset.

CCS Concepts: • Computing methodologies → Ray tracing.

Additional Key Words and Phrases: cross-regression, online machine learn-
ing, interactive denoising, Monte Carlo ray tracing

ACM Reference Format:
Hajin Choi, Seokpyo Hong, Inwoo Ha, Nahyup Kang, and Bochang Moon.
2024. Online Neural Denoising with Cross-Regression for Interactive Ren-
dering. ACM Trans. Graph. 43, 6, Article 221 (December 2024), 12 pages.
https://doi.org/10.1145/3687938

1 INTRODUCTION

Monte Carlo (MC) ray tracing, such as path tracing [Kajiya 1986],
enables us to synthesize various lighting effects by simulating ran-
domly generated light paths. It allows us to generate noisy but
unbiased pixel estimates, which become more accurate when we
take more samples per pixel. As a result, if render time is not con-
strained, we can allocate enough samples to achieve visually smooth
images with a low amount of noise. Unfortunately, in interactive
rendering scenarios, the sample size must be limited to a small num-
ber (e.g., four samples per pixel), resulting in temporally unstable
noisy sequences. Recent breakthroughs [Kettunen et al. 2023; Lin

ACM Trans. Graph., Vol. 43, No. 6, Article 221. Publication date: December 2024.

HTTPS://ORCID.ORG/0000-0001-9488-9514
HTTPS://ORCID.ORG/0000-0001-7090-146X
HTTPS://ORCID.ORG/0009-0006-0557-526X
HTTPS://ORCID.ORG/0000-0002-8067-8764
HTTPS://ORCID.ORG/0000-0003-3142-0115
https://orcid.org/0000-0001-9488-9514
https://orcid.org/0000-0001-7090-146X
https://orcid.org/0009-0006-0557-526X
https://orcid.org/0000-0002-8067-8764
https://orcid.org/0000-0003-3142-0115
https://doi.org/10.1145/3687938
https://doi.org/10.1145/3687938

221:2 • Hajin Choi, Seokpyo Hong, Inwoo Ha, Nahyup Kang, and Bochang Moon

et al. 2022], which reuse light paths spatiotemporally across ad-
jacent pixels and frames, have unbiasedly reduced noise in pixel
estimates. However, this fundamental challenge stemming from MC
integration remains.

An appealing option for addressing MC noise in interactive image
sequences is to exploit image denoising, which converts unbiased
but noisy image sequences into biased but less noisy ones. A prac-
tical advantage of image denoising is its simplicity, as it does not
require altering the underlying sampling process. Moreover, image
denoising can be designed effectively while alleviating denoising
bias by considering rendering-specific buffers, e.g., G-buffers like
textures and normals. Well-known examples include cross-bilateral
filters [Schied et al. 2017] and regression-based methods [Koskela
et al. 2019; Meunier and Harada 2022], which control their denois-
ing weights using G-buffers to avoid blurring pixel colors across
geometric edges.

Nonetheless, preserving other image edges introduced by changes
in illumination (e.g., shadows), is nontrivial since G-buffers cannot
capture such high-frequency information. Estimating denoising er-
rors and adjusting the smoothing per pixel is a well-known optimiza-
tion route for alleviating excessive denoising bias on non-geometric
edges [Zwicker et al. 2015].While this error analysis-based approach
has demonstrated significant noise reduction without severe blur-
ring, a robust estimation of denoising errors often requires enough
samples, typically only available in offline rendering scenarios.
An alternative to the classical denoising approach is to rely on

a neural network that enables local smoothing adjustments (i.e.,
balancing denoising bias and variance per pixel) without the need
to analyze denoising errors. It often leads to superior denoising
outputs, such as sharper results than those achieved with classical
methods, especially for non-geometric edges. Nonetheless, rely-
ing on a neural network involves a training process using external
datasets, which include noisy image sequences and their noiseless
ground truth images, i.e., supervised learning. Unfortunately, prepar-
ing such datasets requires significant manual effort, as the training
datasets should be extensive to enable the denoising neural net-
work to learn to preserve various image edges in runtime image
sequences.
This paper presents a hybrid denoising framework that com-

bines classical and neural network-based approaches while main-
taining their strengths: the simplicity of classical methods without
the need for external training datasets and robust denoising perfor-
mance driven by a neural network. Our hybrid denoiser reduces the
variance of noisy input sequences via a classical regression-based
approach and further enhances the denoised images via a neural
network. Unlike supervised learning-based denoisers that rely on
extensive training datasets, our method employs online learning.
We sequentially update our network parameters per frame using
only runtime image sequences, eliminating the need for the datasets.
Our technical contributions are as follows.
• Weadapt classical regression-based denoising to a cross-regression
form that splits a noisy input image into two disjoint buffers
and fits linear functions formed by pixel colors in one buffer to
pixel colors in the other, resulting in two pilot estimates.

• We propose an online learning strategy that trains a denois-
ing neural network using the two pilot estimates. The neural
network produces a denoised output from the pilot estimates
while simultaneously learning to preserve various image edges
from these estimates in runtime, through a sequential update of
network parameters per frame.
We demonstrate that our hybrid denoising framework can pre-

serve various image edges, including non-geometric edges, more
effectively than classical methods, thanks to the use of a neural
network similar to existing supervised learning methods. However,
unlike supervised methods, our robust denoising is achieved via
online learning without the need for external datasets.

2 RELATED WORK

Image denoising, which trades MC noise with denoising bias, has
become a simple and practical post-sampling process. Balancing
the bias-variance tradeoff is essential to minimize denoising errors
and produce visually sharp denoising results with reduced noise. A
well-known optimization route for achieving such balance involves
estimating per-pixel denoising errors and selecting denoising param-
eters that minimize these errors, e.g., adaptive parameter selection
for the cross-bilateral filter [Li et al. 2012; Sen and Darabi 2012] and
regression-based denoisers [Bitterli et al. 2016; Moon et al. 2014].
Unfortunately, it requires a sufficient number of samples for robust
error estimation (and thus proper parameter selection), which is
only feasible in offline rendering scenarios. We refer to a thorough
discussion by Zwicker et al. [2015] on this adaptive parameter se-
lection in offline rendering. In this section, we discuss interactive
denoising methods related to our approach.

Interactive techniques usually take an animated image sequence
generated by MC ray tracing at an interactive rate and reduce MC
noise by aggregating a pixel color with its neighboring pixel colors.
This aggregation step also leverages temporal coherence between
the current and previous frames, which relies on image reprojec-
tion [Nehab et al. 2007; Scherzer et al. 2007]. See the survey by
Yang et al. [2020] for a comprehensive overview of this reprojection
scheme.

Classical image denoising. A classical yet natural choice for in-
teractive denoising is to exploit well-known image filters with G-
buffers that are much less noisy than input colors. This approach
enables image denoising to avoid blurring image edges introduced
by geometric discontinuities. For example, Schied et al. [2017; 2018]
applied the edge-avoiding A-trous filter [Dammertz et al. 2010] and
further optimized their denoising parameters using the variance of
pixel colors. Other notable examples include separate filtering using
a material decomposition [Mara et al. 2017] and regression-based
denoisers [Koskela et al. 2019; Meunier and Harada 2022].

Neural image denoising. A popular alternative is devising a deep
neural network that produces a denoised image from a noisy image
and G-buffers while guiding the network to achieve an ideal denois-
ing output without excessive edge blurs through supervised learning
with ground truth images. Examples include an autoencoder with a
recurrent convolutional block [Chaitanya et al. 2017], convolutional

ACM Trans. Graph., Vol. 43, No. 6, Article 221. Publication date: December 2024.

Online Neural Denoising with Cross-Regression for Interactive Rendering • 221:3

neural network-based denoising [Meng et al. 2020] with neural bi-
lateral grids [Gharbi et al. 2017], bilateral weighting using trainable
affinity features [Işık et al. 2021], and separate denoising of par-
titioned radiances by a neural network [Balint et al. 2023]. Other
advanced methods are an efficient adaptation [Fan et al. 2021] of a
kernel-predicting convolutional neural network [Bako et al. 2017],
joint optimization of sampling and denoising [Hasselgren et al. 2020;
Thomas et al. 2022], and a kernel-predicting network for separate
denoising of surfaces and volumes [Hofmann et al. 2023].

The aforementioned classical approaches and supervised learning
methods have distinct strengths and weaknesses. Classical methods
are simple as they do not require a pre-training stage. However, pre-
serving non-geometric image edges, such as shadows, is technically
challenging since G-buffers do not capture this high-frequency in-
formation. On the other hand, learning-based denoisers can enhance
the denoising process by guiding their neural networks to preserve
such complex edges. However, this superior capability comes with
a nontrivial effort in preparing a training dataset that should be
extensive enough to generalize to various runtime image sequences.
We propose a hybrid denoising framework that combines the

strengths of both approaches: robust denoising with a neural net-
workwithout the need for external training datasets.We achieve this
denoising objective through online training of a denoising neural
network, guided by a classical regression-based approach.

Post-correction of image denoising. In offline denoising, Back et
al. [2022] proposed a post-correction neural network to improve
an offline image denoiser, and they trained the neural network us-
ing a self-supervised loss with runtime images, unlike supervised
learning-based post-correction networks [Back et al. 2020; Gu et al.
2022]. Our method shares similarities with this recent technique in
that both aim to train a neural network using only runtime images.
However, a key technical distinction is that we use an online learn-
ing scheme that trains the network sequentially per frame using a
streaming image sequence, unlike the previous approach, which is
designed for an offline scenario (i.e., a single frame input).

3 BACKGROUND

This section briefly overviews regression-based denoising tech-
niques [Koskela et al. 2019; Moon et al. 2014] and motivates our
hybrid framework, which integrates this classical regression scheme
with a neural network.

Local regression [Cleveland 1979; Cleveland and Devlin 1988;
Ruppert and Wand 1994] is a well-established statistical technique
that estimates an unknown function 𝑓 (𝒙) by approximating it with
simple local functions using observed paired samples (𝒙𝑖 , 𝑦𝑖), and it
assumes a noise model:

𝑦𝑖 = 𝑓 (𝒙𝑖) + 𝑒𝑖 , (1)

where 𝑒𝑖 is an additive noise with 𝐸 [𝑒𝑖] = 0 and the explanatory
variable 𝒙𝑖 is supposed to be noise-free.

As an application of local regression, we can treat the unknown
and noisy values, 𝑓 (𝒙𝑖) and 𝑦𝑖 , as the ground truth and noisy colors
at pixel 𝑖 , rendered with infinite and finite samples, respectively.
Then, we can think of a simple function that linearly approximates
the ground truth 𝑓 (𝒙𝑖) in neighboring pixels 𝑖 within a denoising

0.9712 / 0.4493
(a) ReSTIR PT

1.6054 / 0.2463
(b) BMFR

0.0348 / 0.1177
(c) Ours

relL2 / 1−SSIM
(d) Reference

Fig. 2. Comparisons of two regression-based approaches, BMFR [Koskela

et al. 2019] (b) and our technique (c), for the unbiased noisy input, ReSTIR

PT [Lin et al. 2022] (a). Fitting a linear function of G-buffers enables effec-

tive noise reduction while preserving geometric edges (the top row in (b)).

However, it comes at the expense of blurring the non-geometric edges (the

bottom row in (b)). Our method (c) utilizes an adapted regression with a

neural network and preserves the geometric and non-geometric edges. The

two numbers below the insets are relative L2 (relL2) [Rousselle et al. 2011]
and 1−SSIM [Wang et al. 2004] errors. The insets are taken from the images

of the Bistro scene shown in Fig. 6.

window Ω𝑐 (e.g., 17 × 17 image window) at a center pixel 𝑐:

𝑓 (𝒙𝑖) ≈ 𝑓 (𝒙𝑐) + ∇𝑓 (𝒙𝑐)𝑇 (𝒙𝑖 − 𝒙𝑐), (2)

where 𝒙𝑖 and 𝒙𝑐 are the explanatory variables at pixels 𝑖 and 𝑐 , which
predict the linear change from 𝑓 (𝒙𝑐) to 𝑓 (𝒙𝑖). A common choice for
setting these variables is to use G-buffers (e.g., textures and normals),
which are often nearly noise-free and can guide local color changes
by geometric discontinuities [Koskela et al. 2019; Moon et al. 2014].
For brevity, we treat this function as a scalar function since we can
apply this approximation to each color channel, respectively.

The unknown values 𝑓 (𝒙𝑐) and ∇𝑓 (𝒙𝑐) in Eq. 2 can be estimated
by solving a least-squares objective function at the center pixel 𝑐:[

𝛼𝑐
𝛽𝑐

]
= argmin

�̃�𝑐 ,𝛽𝑐

∑︁
𝑖∈Ω𝑐

𝑤𝑐,𝑖

(
𝑦𝑖 − 𝛼𝑐 − 𝛽𝑇𝑐 (𝒙𝑖 − 𝒙𝑐)

)2
, (3)

where the resulting parameters 𝛼𝑐 and 𝛽𝑐 are the estimates of the
unknowns 𝑓 (𝒙𝑐) and∇𝑓 (𝒙𝑐) in Eq. 2.𝑤𝑐,𝑖 is the weight that controls
the relative importance of the squared error at pixel 𝑖 . Intuitively, the
weight𝑤𝑐,𝑖 should be set to a high value only when the difference
𝒙𝑖 − 𝒙𝑐 can linearly predict the difference 𝑓 (𝒙𝑖) − 𝑓 (𝒙𝑐), without a
significant approximation error (see Eq. 2). The optimal parameters,
𝛼𝑐 and 𝛽𝑐 , can be computed via the normal equation:[

𝛼𝑐
𝛽𝑐

]
= (𝑋𝑇

𝑐 𝑊𝑐𝑋𝑐)−1𝑋𝑇
𝑐 𝑊𝑐𝑌𝑐 , (4)

where the rows of the design matrix 𝑋𝑐 are set to [1, (𝒙𝑖 − 𝒙𝑐)𝑇]
and the diagonal matrix𝑊𝑐 is set by the weight𝑤𝑐,𝑖 (in Eq. 3). 𝑌𝑐 is
a column vector which contains the pixel values 𝑦𝑖 within Ω𝑐 .
One can solve the normal equation per pixel and take the 𝛼𝑐 (in

Eq. 4) for the denoised value at the pixel, i.e., pixel-wise regres-
sion [Moon et al. 2014]. An alternative for more efficient computa-
tion is solving it only at a sparse set of center pixels and simultane-
ously producing multiple denoised values within the local window

ACM Trans. Graph., Vol. 43, No. 6, Article 221. Publication date: December 2024.

221:4 • Hajin Choi, Seokpyo Hong, Inwoo Ha, Nahyup Kang, and Bochang Moon

Conv Max pooling Up-sampling Skip connection Forward Backward ReprojectionR

R 𝑓 𝑝 (𝒙)

𝜌,𝒏

𝑦𝐴, 𝑦𝐵

𝑓 (𝒙𝐴)
𝑓 (𝒙𝐵)

𝜽𝑐
𝑓 (𝒙𝐴)
𝑓 (𝒙𝐵)

𝑓 (𝒙)

Cross-regression
(Sec. 4.1)

Self-supervised loss
(Sec. 4.3)

Spatiotemporal filter
(Sec. 4.2)

R

8
16

32
16

8

Fig. 3. Our hybrid denoising framework takes two unbiased images (𝑦𝐴 and 𝑦𝐵) along with G-buffers (textures 𝜌 and normals 𝒏) and a warped denoising

output R 𝑓 𝑝 (𝒙) from the previous frame 𝑝 as input. We conduct cross-regression that fits linear functions formed by pixel colors in one noisy image to other

pixel colors in another image, resulting in two pilot estimates 𝑓 (𝒙𝐴) and 𝑓 (𝒙𝐵) . We then feed the estimates (together with G-buffers and the R 𝑓 𝑝 (𝒙)) to a

neural network, which infers the per-pixel parameters 𝜽𝑐 of a spatiotemporal filter. This filter produces two denoised images, 𝑓 (𝒙𝐴) and 𝑓 (𝒙𝐵) , which are

combined for the final output 𝑓 (𝒙) . Lastly, we update the neural network parameters using a self-supervised loss based on the pilot estimates.

Ω𝑐 using the 𝛼𝑐 and 𝛽𝑐 , i.e., block-wise regression [Koskela et al.
2019; Moon et al. 2015].

We take the latter approach and uniformly place center pixels in
only a small number of positions. Specifically, we use only 1/16 of
the pixels in an image as the center pixels and then solve the normal
equation (Eq. 4) at these centers. We then compute a denoising
output 𝑓 (𝒙𝑖) at pixel 𝑖 using its neighboring center pixels 𝑐 ∈ Ω𝑖 as

𝑓 (𝒙𝑖) =
∑
𝑐∈Ω𝑖

𝑤𝑐,𝑖

(
𝛼𝑐 + 𝛽𝑇𝑐 (𝒙𝑖 − 𝒙𝑐)

)∑
𝑐∈Ω𝑖

𝑤𝑐,𝑖
. (5)

Technical challenges and our motivation. Applying this linear
regression-based denoising to interactive image sequences is straight-
forward due to the availability of a closed-form solution, the normal
equation (Eq. 4). However, its denoising quality heavily depends
on the linear relationship between the explanatory variables and
ground truth values. For example, Fig. 2 shows the denoising results
of a block-wise regression [Koskela et al. 2019], which uses G-buffers
as explanatory variables. It preserves the geometric edges but fails
to maintain non-geometric edges that the G-buffers cannot capture.
We can consider an optimization that estimates the mean-squared
error (MSE) of the regression-based denoising per pixel and adjusts
the weight 𝑤𝑐,𝑖 (in Eq. 3) to minimize its denoising errors [Moon
et al. 2014]. Unfortunately, unlike in offline scenarios, robust estima-
tion of the per-pixel MSE is technically challenging for interactive
scenarios where only a few samples per pixel can be allocated. This
challenge leads us to propose a different strategy for exploiting this
classical linear regression with a neural network instead of adopting
such an MSE-based optimization, while maintaining its simplicity
that does not require any pre-training with external datasets.

4 ONLINE NEURAL DENOISING WITH

CROSS-REGRESSION

This section introduces our denoising framework (Fig. 3), which
combines local regression (Sec. 3) with a neural network. For the

input of this framework, we split color samples produced by path
tracing into two sets of samples to generate two disjoint color images
(𝑦𝐴 and 𝑦𝐵), each of which is a noisy but unbiased estimate of the
ground truth image.

We exploit an adapted regression (i.e., cross-regression in Sec. 4.1)
that produces two regression outputs 𝑓 (𝒙𝐴) and 𝑓 (𝒙𝐵) as pilot
estimates using the two noisy inputs (𝑦𝐴 and 𝑦𝐵) and G-buffers
(textures 𝜌 and normals 𝒏). We then utilize the pilot estimates as
input for a denoising neural network, which generates our final
denoising result through a trainable spatiotemporal filter (Sec. 4.2).
We also use these estimates to train the neural network (Sec. 4.3).

4.1 Cross-Regression

Our process begins by utilizing local regression (Sec. 3) to generate
pilot estimates. These estimates not only serve as input for a denois-
ing neural network but also guidance for training it. Our denoising
neural network produces the final output and updates its learnable
parameters based on these estimates. This approach differs from
the traditional use of this regression scheme, where the estimates
directly become the final output.

A straightforward option for our purpose is to adopt the existing
regression scheme (e.g., [Koskela et al. 2019]) without modification.
However, it often produces over-blurred results on non-geometric
edges (see Fig. 2) that are undesirable for the input and guidance
of a denoising neural network, which aims to reduce the noise, not
the bias, of its input.

Instead, we aim to produce pilot estimates, 𝑓 (𝒙𝐴) and 𝑓 (𝒙𝐵), with
less noise than the unbiased inputs, 𝑦𝐴 and 𝑦𝐵 , while preserving
image details, including geometric and non-geometric edges, in the
noisy inputs. To this end, we configure a linear function using noisy
colors in one buffer along with G-buffers, and fit this local function
to the noisy colors in another buffer.
For this cross-regression, we split the difference of explanatory

variables, 𝒙𝑖 − 𝒙𝑐 (in Eq. 3), into two separate ones: 𝒙𝐴𝑖 − 𝒙𝐴𝑐 and

ACM Trans. Graph., Vol. 43, No. 6, Article 221. Publication date: December 2024.

Online Neural Denoising with Cross-Regression for Interactive Rendering • 221:5

0.9712 / 0.4493
(a) ReSTIR PT

1.6054 / 0.2463
(b) BMFR

0.0507 / 0.1494
(c) Our regression

relL2 / 1−SSIM
(d) Reference

Fig. 4. Comparisons of an existing regression-based approach (BMFR) (b)

and our cross-regression (c) for the unbiased input (a). We tailor local re-

gression to a cross-regression form so that its output estimates can guide

robust spatiotemporal filtering of a denoising neural network, instead of

taking the estimates as the final output. The zoomed areas are taken from

the unbiased and denoised images for the Bistro scene in Fig. 6.

𝒙𝐵𝑖 − 𝒙𝐵𝑐 . For example, the difference for the buffer 𝐴 is set as

𝒙𝐴𝑖 − 𝒙𝐴𝑐 =

[
𝑦𝐴𝑖 − 𝑦𝐴𝑐

�̂�𝐴𝑖 + �̂�𝐴𝑐 + 𝜖
, 𝜌𝑖 − 𝜌𝑐 , 𝒏𝑖 − 𝒏𝑐

]𝑇
, (6)

where �̂�𝐴𝑖 and �̂�𝐴𝑐 are the estimated standard deviations of 𝑦𝐴𝑖 and
𝑦𝐴𝑐 , and 𝜖 is a small constant to prevent division by zero. We esti-
mate the variance at a pixel, e.g., (�̂�𝐴𝑖)2 and (�̂�𝐴𝑐)2, as the squared
difference between the color at the pixel and the average color of its
neighboring pixels (except for the pixel) within the 3 × 3 window.

We also compute the regression weight𝑤𝑐,𝑖 (in Eq. 3) separately
for each buffer (𝐴 or 𝐵). Specifically, the weight𝑤𝐴

𝑐,𝑖 for the buffer
𝐴 is computed as

𝑤𝐴
𝑐,𝑖 = exp

(
− ∥𝑦𝐴𝑖 − 𝑦𝐴𝑐 ∥2
(�̂�𝐴𝑐)2 + (�̂�𝐴𝑖)2 + 𝜖

)
. (7)

The other difference 𝒙𝐵𝑖 − 𝒙𝐵𝑐 and weight𝑤𝐵
𝑐,𝑖 for the other buffer 𝐵

are computed using the 𝑦𝐵 in the same way.
We then conduct the block-wise regression (Eqs. 4 and 5) twice

at pixel 𝑐 : one regression using 𝒙𝐴𝑖 − 𝒙𝐴𝑐 and𝑤𝐴
𝑖 for 𝑦𝐵 and another

regression using 𝒙𝐵𝑖 − 𝒙𝐵𝑐 and 𝑤𝐵
𝑖 for 𝑦𝐴 . It results in two pilot

estimates, 𝑓 (𝒙𝐴) and 𝑓 (𝒙𝐵), which are fed into our denoising neural
network (Sec. 4.2). Note that 𝑓 (𝒙𝐴) is strongly correlated with 𝑦𝐴
since 𝑓 (𝒙𝐴) is a linear function of 𝑦𝐴 (not 𝑦𝐵). Similarly, 𝑓 (𝒙𝐵) has
a strong linear correlation with 𝑦𝐵 .
Fig. 4 compares our result, i.e., the average of the two pilot esti-

mates, with a previous regression-based denoiser. Our modification
to the existing regression is simple, but it enables us to reduce
denoising bias thanks to exploiting noisy but complete shading in-
formation, i.e., noisy colors, as explanatory variables. Nonetheless,
taking the regression estimates as a final output is undesirable, as
the estimates can contain residual noise due to the relaxation of the
noise-free assumption on the explanatory variables (in Eq. 1). In-
stead, we use the resulting estimates as input for a denoising neural
network and as guidance for its training.

4.2 Our Denoising Neural Network

Our denoising neural network consists of a simplified variant of
U-Net [Ronneberger et al. 2015] and a spatiotemporal filter that
produces our final output 𝑓 (𝒙) at the current frame (see Fig. 3).

The U-Net takes the two pilot estimates, 𝑓 (𝒙𝐴) and 𝑓 (𝒙𝐵) from
our cross-regression (Sec. 4.1), G-buffers (textures 𝜌 and normals 𝒏),
and a reprojected denoising output R 𝑓 𝑝 (𝒙) from the previous frame
𝑝 .R is a reprojection function that warps the previous denoising out-
put 𝑓 𝑝 (𝒙) to the current frame using depth-based motions [Nehab
et al. 2007; Scherzer et al. 2007]. The last convolutional layer of the U-
Net infers six per-pixel parameters, i.e., 𝜽𝑐 = [𝜃𝐴𝑐 , 𝜃𝐵𝑐 , 𝜃𝜌𝑐 , 𝜃𝑛𝑐 , 𝜃𝑝𝑐 , 𝜃𝛼𝑐],
for our spatiotemporal filtering at pixel 𝑐 .

Let us detail the spatiotemporal filter that reduces residual noise in
their two input estimates, 𝑓 (𝒙𝐴) and 𝑓 (𝒙𝐵), by spatially averaging
the pixel colors in each pilot estimate and temporally blending
the spatial output with the warped previous output R 𝑓 𝑝 (𝒙). For
example, this spatiotemporal average 𝑓 (𝒙𝐴𝑐) at a center pixel 𝑐 for
the first input 𝑓 (𝒙𝐴) is computed as

𝑓 (𝒙𝐴𝑐) = 𝜃𝛼𝑐

∑
𝑖∈Ω′

𝑐
𝑚𝐴
𝑖 𝑓 (𝒙𝐴𝑖)∑

𝑖∈Ω′
𝑐
𝑚𝐴
𝑖

+ (1 − 𝜃𝛼𝑐)R 𝑓 𝑝 (𝒙𝑐), (8)

where the denoising window Ω′
𝑐 is set to 11 × 11. We define the

weight𝑚𝐴
𝑖 as a cross-bilateral form:

𝑚𝐴
𝑖 =exp

(
− ∥ 𝑓 (𝒙𝐴𝑖) − 𝑓 (𝒙𝐴𝑐)∥2

(𝜃𝐴𝑐)2 + 𝜖

)
×

exp
(
− ∥𝜌𝑖 − 𝜌𝑐 ∥2

(𝜃𝜌𝑐)2 + 𝜖
− ∥𝒏𝑖 − 𝒏𝑐 ∥2

(𝜃𝑛𝑐)2 + 𝜖
− ∥𝒑𝑖 − 𝒑𝑐 ∥2

(𝜃𝑝𝑐)2 + 𝜖

)
,

(9)

where 𝒑𝑖 and 𝒑𝑐 are the pixel positions at pixels 𝑖 and 𝑐 , respectively.
We also apply this spatiotemporal filter (Eq. 8) to the other input
𝑓 (𝒙𝐵) in the same manner, using𝑚𝐵

𝑖 with the 𝑓 (𝒙𝐵). It results in
the two output estimates, 𝑓 (𝒙𝐴) and 𝑓 (𝒙𝐵).
Our last task is to combine the two resulting estimates into the

final denoising output 𝑓 (𝒙), and this is computed per pixel 𝑐 as

𝑓 (𝒙𝑐) =
𝑓 (𝒙𝐴𝑐)

∑
𝑖∈Ω′

𝑐
𝑚𝐴
𝑖 + 𝑓 (𝒙𝐵𝑐)

∑
𝑖∈Ω′

𝑐
𝑚𝐵
𝑖∑

𝑖∈Ω′
𝑐
𝑚𝐴
𝑖 + ∑

𝑖∈Ω′
𝑐
𝑚𝐵
𝑖

. (10)

4.3 Online Learning of Our Denoising Neural Network

Optimizing the parameters of a model-based filter, e.g., our spa-
tiotemporal filter with cross-bilateral weighting, through a neural
network is a commonly adopted scheme, e.g., [Kalantari et al. 2015].
However, our denoising objective, which is distinct from existing
supervised learning-based approaches, is to train such a network
on the fly using only runtime image sequences, which frees our
framework from relying on an external dataset. To achieve our goal,
we define a self-supervised loss:

L =
1
|I |

∑︁
𝑐∈I

1
2 (L

𝑠
𝑐 + L𝑡

𝑐), (11)

where I is the set of all pixels. This loss L is configured using a
spatial loss L𝑠

𝑐 and a temporal loss L𝑡
𝑐 at pixel 𝑐 . We compute the

ACM Trans. Graph., Vol. 43, No. 6, Article 221. Publication date: December 2024.

221:6 • Hajin Choi, Seokpyo Hong, Inwoo Ha, Nahyup Kang, and Bochang Moon

Table 1. Average errors of denoised image sequences for each scene. The bold and underlined values indicate the best and second-best, respectively.

Learning Type Method Bistro Bistro Dynamic Emerald Sqare Staircase Music Room
relL2 1−SSIM relL2 1−SSIM relL2 1−SSIM relL2 1−SSIM relL2 1−SSIM

- ReSTIR PT 1.2797 0.4536 0.5141 0.5076 41.5661 0.2992 2.5075 0.2631 0.7543 0.5008

Unsupervised SVGF 0.9551 0.1787 0.1399 0.1501 0.4106 0.2950 0.0350 0.0608 0.0621 0.0863
BMFR 1.8255 0.2687 0.1798 0.2070 0.6799 0.3700 0.0262 0.1138 0.0782 0.1196

Supervised OptiX 0.0901 0.1494 0.0219 0.1570 0.1536 0.2032 0.0086 0.0806 0.0169 0.0905
NBG 0.7553 0.1943 0.0750 0.1697 0.5379 0.2682 0.0568 0.1056 0.0429 0.1020

Self-supervised Ours 0.0409 0.1270 0.0196 0.1170 0.0470 0.1718 0.0052 0.0400 0.0115 0.0648

first term as

L𝑠
𝑐 =

1
2

(
∥ 𝑓 (𝒙𝐴𝑐) − 𝑓 (𝒙𝐵𝑐)∥2

∥ 𝑓 (𝒙𝐵𝑐)∥2 + 𝜖
+ ∥ 𝑓 (𝒙𝐵𝑐) − 𝑓 (𝒙𝐴𝑐)∥2

∥ 𝑓 (𝒙𝐴𝑐)∥2 + 𝜖

)
. (12)

Note that the two denoising outputs, 𝑓 (𝒙𝐴𝑐) and 𝑓 (𝒙𝐵𝑐), are separate
denoising results from the two pilot estimates, 𝑓 (𝒙𝐴) and 𝑓 (𝒙𝐵),
and each output strongly correlates only with its input, i.e., either
𝑓 (𝒙𝐴) or 𝑓 (𝒙𝐵). Hence, we can measure the discrepancy between
a denoising output in one buffer and the pilot estimates in another
buffer while avoiding overfitting to noise.
Additionally, we exploit the temporal loss L𝑡

𝑐 for temporally
stable denoising as

L𝑡
𝑐 =

1
2

(
∥ 𝑓 (𝒙𝐴𝑐) − R 𝑓 𝑝 (𝒙𝐵𝑐)∥2

∥R 𝑓 𝑝 (𝒙𝐵𝑐)∥2 + 𝜖
+ ∥ 𝑓 (𝒙𝐵𝑐) − R 𝑓 𝑝 (𝒙𝐴𝑐)∥2

∥R 𝑓 𝑝 (𝒙𝐴𝑐)∥2 + 𝜖

)
, (13)

which measures the discrepancy between the denoising outputs, i.e.,
𝑓 (𝒙𝐴𝑐) and 𝑓 (𝒙𝐵𝑐), and the warped pilot estimates from the previous
frame 𝑝 , i.e., R 𝑓 𝑝 (𝒙𝐴𝑐) and R 𝑓 𝑝 (𝒙𝐵𝑐). We update the parameters of
our neural network using the self-supervised loss L (Eq. 11) per
frame through backpropagation, i.e., one gradient step per frame.

Relation to previous self-supervised learning methods. Training a
denoising or post-denoising neural network using two noisy col-
ors without ground truth images has been explored. For instance,
Lehtinen et al. [2018] introduced a self-supervised learning scheme,
Noise2Noise, which trains a denoising neural network for general or
rendered images using only noisy image pairs. Additionally, Back et
al. [2022] trained a post-denoising network that corrects a denoising
output from a noisy image using another noisy image.
These previous investigations have guided us in preparing two

exclusive input images. However, these inputs are less reliable than
those used in the previous offline scenarios, as our input is an image
sequence generated with only a few samples (not the static frame
rendered with relatively large samples). To accommodate this self-
supervised learning for our interactive scenario, we exploit cross-
regression that transforms the noisy inputs into more accurate pilot
estimates due to reduced noise (see Fig. 4), while maintaining a low
correlation between the two. It enables our neural network to learn
robust spatiotemporal denoising for a very noisy streaming input.

4.4 Network and Training Details

Our framework (Fig. 3) employs a U-Net architecture with two max-
pooling and up-sampling layers, and its final layer is a 1×1 convolu-
tional layer that infers the parameters 𝜽𝑐 = [𝜃𝐴𝑐 , 𝜃𝐵𝑐 , 𝜃𝜌𝑐 , 𝜃𝑛𝑐 , 𝜃𝑝𝑐 , 𝜃𝛼𝑐]
for the spatiotemporal filtering per pixel 𝑐 . We use the sigmoid func-
tion for the 𝜃𝛼𝑐 . The other convolutional layers have [8, 16, 32, 16, 8]
filters of size 3 × 3 with ReLU. The number of learnable parameters
for the U-Net is about 30K, and we initialize the parameters ran-
domly before taking the first frame in a runtime image sequence to
verify our online learning framework without any pre-training. We
use Adam [Kingma and Ba 2017] with a learning rate of 0.001.

We apply the log transform [Bako et al. 2017] to two unbiased im-
ages, 𝑦𝐴 and 𝑦𝐵 , in HDR color space and use the images as the input
to our cross-regression. Thus, the U-Net takes the pilot estimates,
𝑓 (𝒙𝐴) and 𝑓 (𝒙𝐵), in a log-transformed color space and produces
their denoising output 𝑓 (𝒙) in the color space. We then inverse-
transform the output into the original space. We have implemented
this neural network using Tensorflow [Abadi et al. 2015].

5 RESULTS AND DISCUSSION

This section compares our denoising with two classical methods:
SVGF [Schied et al. 2017], which uses a variance-guided cross-
bilateral filter, and BMFR [Koskela et al. 2019], which employs an ef-
ficient block-wise regression. We verify that combining a regression-
based approach with a neural network can produce more accurate
results than these classical methods while addressing their technical
weakness, i.e., blurring non-geometric edges.

We also compare our method with two supervised learning meth-
ods: an industrial denoiser, NVIDIAOptiX denoiser (OptiX) [NVIDIA
2021], and NBG [Meng et al. 2020]. We validate that our method
can achieve their superior denoising quality (i.e., preserving non-
geometric edges) without the need for supervised learning with an
external dataset.
We generate unbiased but noisy image sequences using a state-

of-the-art path tracer, ReSTIR PT [Lin et al. 2022], built upon Fal-
cor [Kallweit et al. 2022], as input for the denoisers, unless otherwise
mentioned. Specifically, we let ReSTIR PT set the number of reser-
voirs per pixel to match the number of samples per pixel (spp). When
testing our method, we split the reservoirs into two sets to produce
the two unbiased inputs (𝑦𝐴 and 𝑦𝐵).
We use the SVGF and OptiX implementations within the Falcor

framework. We exploit the public implementation of BMFR and
tune its parameters using our test scenes. Additionally, we use the

ACM Trans. Graph., Vol. 43, No. 6, Article 221. Publication date: December 2024.

Online Neural Denoising with Cross-Regression for Interactive Rendering • 221:7

pre-trained networks provided by the respective authors of NBG.
We test denoisers using five scenes (the Bistro, Bistro Dynamic,
Emerald Sqare, Staircase, and Music Room scenes shown in
Fig. 6), each containing 300 animated frames. We use 4 spp for the
Emerald Sqare and 2 spp for other scenes. The reference images
are rendered using 2K spp. We set the image resolution to Full HD
(1920 × 1080).

We use the relative L2 (relL2) [Rousselle et al. 2011] to measure
the numerical accuracy of tested methods and SSIM [Wang et al.
2004] to assess the perceptual errors of the techniques.

Qualitative and quantitative comparisons. Figs. 6 and 7 provide
visual and numerical comparisons with classical methods (SVGF
and BMFR) and supervised learning techniques (OptiX and NBG).
Table 1 reports the average errors of tested denoisers for animated
sequences. As shown in Fig. 6, SVGF and BMFR produce smooth
denoising results while preserving high-frequency details captured
by their edge-stopping functions (i.e., G-buffers), but they tend to
blur other edges, such as shadows. The supervised learning meth-
ods (OptiX and NBG) restore such complex edges more effectively
than classical approaches through their neural networks trained
with external datasets. In particular, the industrial method (OptiX)
produces much lower relL2 errors than the classical approaches, as
shown in Fig. 7 and Table 1.
Our method relies on a neural network, similar to the existing

neural denoisers. However, we employ a different learning strategy:
online learning of the network using only runtime image sequences.
The results (Figs. 6, 7, and Table 1) verify that our online learn-
ing approach, combined with cross-regression, can compete with
the tested supervised learning techniques, without the need for
preparing external training datasets.

Comparisons of temporal stability. Our accompanying video com-
pares the temporal stability of the tested denoisers. None of the
tested methods, including ours, show ideal denoising results with-
out any temporal artifacts. However, all these denoisers significantly
reduce the temporal instability of their input sequences (i.e., ReSTIR
PT) corrupted by MC noise, highlighting the necessity of spatiotem-
poral denoising for interactive MC rendering. Nevertheless, this
enhancement of temporal stability comes with noticeable blurring
on image edges in the unbiased input sequences. For example, SVGF
and BMFR achieve their temporal stability at the expense of blurring
non-geometric edges. OptiX and NBG maintain such edges better
than the classical methods, but preparing their training dataset re-
quires considerable effort. On the other hand, our method generates
denoised sequences whose temporal stability is comparable to that
of the tested methods while preserving both geometric and non-
geometric image details (see also the 1−SSIM plots in Fig. 7), through
online learning.

Ablation studies. In Fig. 8, we conduct an ablation study of our
denoising framework to demonstrate the relative importance of
our two main components: cross-regression and a neural network
for spatiotemporal filtering. Taking the cross-regression results di-
rectly as the final denoising output, i.e., an average of the two pilot
estimates, 𝑓 (𝒙𝐴) and 𝑓 (𝒙𝐵), introduces noticeable residual noise

Table 2. Average relL2 errors of image denoisers for input image sequences

generated by three different samplings: ordinary path tracing (PT), path

tracing with ReSTIR DI, and ReSTIR PT.

Method Bistro Emerald Sqare
PT ReSTIR DI ReSTIR PT PT ReSTIR DI ReSTIR PT

Input 6.1630 5.0749 1.2797 45.4807 45.4505 41.5661
SVGF 0.8455 0.9680 0.9551 0.4550 0.5201 0.4106
BMFR 1.5350 1.8092 1.8255 0.5594 0.6837 0.6799
OptiX 0.1870 0.1254 0.0901 0.1567 0.1614 0.1536
NBG 0.5962 0.7261 0.7553 0.4694 0.5318 0.5379
Ours 0.2303 0.0959 0.0409 0.0769 0.0571 0.0470

Table 3. Time breakdown of our computational overhead per frame.

Task Time Task Time
Cross-regression 2.27 ms U-Net inference 4.60 ms
Spatiotemporal filter 4.09 ms Backpropagation 11.30 ms

Total 22.26 ms

leading to temporal instability. See the accompanying video for com-
parisons between cross-regression alone and our hybrid method.
Alternatively, one could use the neural network alone without cross-
regression by replacing its input (i.e., two pilot estimates) with
unbiased inputs 𝑦𝐴 and 𝑦𝐵 . However, as shown in Fig. 8, it pro-
duces over-blurred results, as robust self-supervised learning with
such noisy inputs is challenging. On the other hand, our hybrid
framework, which uses cross-regression to train a neural network,
produces an improved result compared to the two alternatives.

Analysis of image denoising with different samplings. Our denois-
ing framework leverages unbiased input estimates as features for
cross-regression and trains a denoising neural network based on
the regression results. Consequently, the accuracy of the input esti-
mates can significantly impact our denoising output. Fig. 5 shows
the results of the tested image denoisers for the Bistro scene, with
varying sampling schemes to generate unbiased inputs. Specifically,
we tested three sampling options: 1) ordinary path tracing (PT), 2)
path tracing with ReSTIR DI [Bitterli et al. 2020], and 3) the selected
ReSTIR PT. We also report the average errors of denoised image
sequences for the Bistro and Emerald Sqare scenes in Table 2.
As shown in Fig. 5 and Table 2, two denoising methods, OptiX

and ours, benefit more effectively from improved sampling schemes
(from sampling options 1 to 3) compared to other denoising tech-
niques. Also, our method is comparable to OptiX when using the
noisiest input images from sampling option 1 (e.g., yielding 1.23×
higher and 2.04× lower errors than OptiX for the Bistro and Emer-
ald Sqare scenes, respectively, as shown in Table 2). Additionally,
our improvement over the other denoisers becomes more significant
as we leverage more advanced sampling options (i.e., from 1 to 3).

Computational overheads. Table 3 provides a breakdown of our
computational overhead for the tested image resolution (1920×1080),
excluding the sampling time of ReSTIR PT. We measured the times

ACM Trans. Graph., Vol. 43, No. 6, Article 221. Publication date: December 2024.

221:8 • Hajin Choi, Seokpyo Hong, Inwoo Ha, Nahyup Kang, and Bochang Moon

6.3115 / 0.9123 0.7284 / 0.2290 1.3173 / 0.2472 0.1646 / 0.2525 0.5779 / 0.2597 0.2251 / 0.2738

5.2322 / 0.6261 0.8472 / 0.2098 1.5863 / 0.2467 0.1109 / 0.2105 0.7169 / 0.2330 0.0912 / 0.1867

0.9712 / 0.4493
(a) Input

0.9632 / 0.1676
(b) SVGF

1.6054 / 0.2463
(c) BMFR

0.0744 / 0.1446
(d) OptiX

0.7867 / 0.1839
(e) NBG

0.0348 / 0.1177
(f) Ours

relL2 / 1−SSIM
(g) Reference

Fig. 5. Comparisons of denoising techniques for the unbiased input (a), generated using three different sampling methods: ordinary path tracing (top row),

path tracing with ReSTIR DI (second row), and ReSTIR PT (bottom row). We show the insets from the 100th frame in the image sequence for the Bistro scene.

using an RTX 4090 graphics card. Note that our computational over-
head remains the same across different test scenes, as our method is
an image-space denoiser, unless the image resolution is changed. As
indicated in the table, approximately half of the time is consumed
by the runtime training of our denoising neural network, specifi-
cally during backpropagation. This results in our overhead being
much higher than that of other methods (3.4 ms for SVGF, 0.9 ms
for BMFR, 3.7 ms for OptiX, and 8.1 ms for NBG). Nonetheless,
our overhead can be considered acceptable for the state-of-the-art
method, ReSTIR PT, which generates noisy inputs at interactive
rates (e.g., 65 ms per frame for the Bistro scene), especially when
considering our significant error reduction of the input, e.g., 26× to
884× smaller relL2 errors than ReSTIR PT in Table 1.

Limitations and future work. Our technical limitation is that we as-
sume noise in unbiased pixel colors is not highly correlated spatially,
similar to other image denoisers. The tested path tracer, ReSTIR
PT, which uses spatiotemporal reuse of light paths, randomly se-
lects neighboring pixels for its unbiased spatial reuse of light paths.
This allows the method to be generally compatible with existing
denoisers, as demonstrated by the results throughout the paper.
However, when its reuse includes fireflies in a frame, such extreme
noise at a pixel can influence its spatiotemporal neighbors, resulting
in correlated outliers, as shown in Fig. 9. All the tested denoisers,
including ours, fail to remove the correlated outliers in their in-
put (ReSTIR PT). Adopting our denoising for the variants of ReSTIR
PT, e.g., [Kettunen et al. 2023; Sawhney et al. 2024], which reduce
correlation in adjacent pixels, could be effective in lessening such
artifacts. It would also be interesting to extend our framework to a
more generalized one that robustly handles such correlated outliers.
The tested denoisers, including our method, rely on G-buffers

to guide image edges. However, G-buffer-based denoising can be
problematic when these buffers become noisy due to depth-of-field
effects or motion blur. One possible solution is to reduce noise in
G-buffers during a pre-filtering stage and then perform image de-
noising using the denoised G-buffers, as has been done for offline
denoisers (e.g., [Bitterli et al. 2016]). However, this pre-filtering can

be challenging in interactive scenarios where the noise in G-buffers
can be significant due to small sample sizes. We leave the exten-
sion of our method into a more robust form, capable of effectively
utilizing noisy G-buffers, for future work.
We demonstrate that training a denoising neural network at an

interactive rate is feasible. However, it is desirable to explore more
efficient trainingmethods to support real-time rendering. One poten-
tial optimization is to update the parameters of our neural network
only when necessary, such as by performing backpropagation us-
ing a subset of input frames rather than entire image sequences.
Additionally, investigating an efficient GPU implementation of a
denoising neural network (e.g., [Müller et al. 2021]) would be valu-
able. Lastly, while we have devised an online training scheme using
a simple U-Net architecture, it would be interesting to explore run-
time training of more advanced denoising networks (e.g., [Xu et al.
2019; Yu et al. 2021]). We leave these explorations for future work.

6 CONCLUSION

This paper presents a denoising framework that reduces noise in in-
teractively generated image sequences. The state-of-the-art denois-
ing strategy relies on a neural network trained using an extensive
training dataset for effective spatiotemporal denoising. However,
unlike classical denoising approaches, these supervised learning
techniques require the preparation of an external dataset. We pro-
pose a different learning strategy that combines a neural network
with a classical approach, i.e., cross-regression, leading to robust
spatiotemporal denoising without needing external datasets.

ACKNOWLEDGMENTS

We are grateful to the reviewers for their constructive comments.
Hajin Choi configured theMusic Room scene using 3D models cour-
tesy of Mikel007, yanix, Roy, gandre82, and Giannisimic. Bochang
Moon, the corresponding author of this paper, was supported by the
Global Research Cluster program of Samsung Advanced Institute of
Technology (IO230915-07152-01).

ACM Trans. Graph., Vol. 43, No. 6, Article 221. Publication date: December 2024.

Online Neural Denoising with Cross-Regression for Interactive Rendering • 221:9

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-
lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, MartinWicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-
Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/
Software available from tensorflow.org.

Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon. 2020. Deep
Combiner for Independent and Correlated Pixel Estimates. ACM Trans. Graph. 39, 6,
Article 242 (Nov. 2020), 12 pages.

Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon. 2022. Self-
Supervised Post-Correction for Monte Carlo Denoising. In ACM SIGGRAPH 2022
Conference Proceedings (SIGGRAPH ’22). Association for Computing Machinery,
Article 18, 8 pages.

Steve Bako, Thijs Vogels, Brian Mcwilliams, Mark Meyer, Jan NováK, Alex Harvill,
Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-Predicting Convolu-
tional Networks for Denoising Monte Carlo Renderings. ACM Trans. Graph. 36, 4,
Article 97 (July 2017), 14 pages.

Martin Balint, Krzysztof Wolski, Karol Myszkowski, Hans-Peter Seidel, and Rafał Man-
tiuk. 2023. Neural Partitioning Pyramids for Denoising Monte Carlo Renderings.
In ACM SIGGRAPH 2023 Conference Proceedings (SIGGRAPH ’23). Association for
Computing Machinery, Article 60, 11 pages.

Benedikt Bitterli, Fabrice Rousselle, Bochang Moon, José A. Iglesias-Guitián, David
Adler, Kenny Mitchell, Wojciech Jarosz, and Jan Novák. 2016. Nonlinearly Weighted
First-order Regression for Denoising Monte Carlo Renderings. Computer Graphics
Forum 35, 4 (2016), 107–117.

Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, and Wojciech
Jarosz. 2020. Spatiotemporal reservoir resampling for real-time ray tracing with
dynamic direct lighting. ACM Trans. Graph. 39, 4, Article 148 (Aug 2020), 17 pages.

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Reconstruc-
tion of Monte Carlo Image Sequences Using a Recurrent Denoising Autoencoder.
ACM Trans. Graph. 36, 4, Article 98 (Jul 2017), 12 pages.

William S Cleveland. 1979. Robust locally weighted regression and smoothing scatter-
plots. Journal of the American statistical association 74, 368 (1979), 829–836.

William S Cleveland and Susan J Devlin. 1988. Locally weighted regression: an approach
to regression analysis by local fitting. Journal of the American statistical association
83, 403 (1988), 596–610.

Holger Dammertz, Daniel Sewtz, Johannes Hanika, and Hendrik P. A. Lensch. 2010.
Edge-Avoiding À-Trous Wavelet Transform for Fast Global Illumination Filtering. In
Proceedings of the Conference on High Performance Graphics (HPG ’10). Eurographics
Association, 67–75.

Hangming Fan, Rui Wang, Yuchi Huo, and Hujun Bao. 2021. Real-time Monte Carlo
Denoising with Weight Sharing Kernel Prediction Network. Computer Graphics
Forum 40, 4 (2021), 15–27.

Michaël Gharbi, Jiawen Chen, Jonathan T. Barron, Samuel W. Hasinoff, and Frédo
Durand. 2017. Deep bilateral learning for real-time image enhancement. ACM Trans.
Graph. 36, 4, Article 118 (Jul 2017), 12 pages.

Jeongmin Gu, Jose A. Iglesias-Guitian, and Bochang Moon. 2022. Neural James-Stein
Combiner for Unbiased and Biased Renderings. ACM Trans. Graph. 41, 6, Article
262 (Nov 2022), 14 pages.

J. Hasselgren, J. Munkberg, M. Salvi, A. Patney, and A. Lefohn. 2020. Neural Temporal
Adaptive Sampling and Denoising. Computer Graphics Forum 39, 2 (2020), 147–155.

Nikolai Hofmann, Jon Hasselgren, and Jacob Munkberg. 2023. Joint Neural Denoising
of Surfaces and Volumes. Proc. ACM Comput. Graph. Interact. Tech. 6, 1, Article 10
(May 2023), 16 pages.

Mustafa Işık, Krishna Mullia, Matthew Fisher, Jonathan Eisenmann, and Michaël Gharbi.
2021. Interactive Monte Carlo Denoising Using Affinity of Neural Features. ACM
Trans. Graph. 40, 4, Article 37 (Jul 2021), 13 pages.

James T. Kajiya. 1986. The Rendering Equation. SIGGRAPH Comput. Graph. 20, 4 (Aug
1986), 143–150.

Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. 2015. A Machine Learning
Approach for Filtering Monte Carlo Noise. ACM Trans. Graph. 34, 4, Article 122 (Jul
2015), 12 pages.

Simon Kallweit, Petrik Clarberg, Craig Kolb, Tom’aš Davidovič, Kai-Hwa Yao, Theresa
Foley, Yong He, Lifan Wu, Lucy Chen, Tomas Akenine-Möller, Chris Wyman, Cyril
Crassin, and Nir Benty. 2022. The Falcor Rendering Framework. https://github.
com/NVIDIAGameWorks/Falcor

Markus Kettunen, Daqi Lin, Ravi Ramamoorthi, Thomas Bashford-Rogers, and Chris
Wyman. 2023. Conditional Resampled Importance Sampling and ReSTIR. In SIG-
GRAPH Asia 2023 Conference Papers (SA ’23). Association for Computing Machinery,
Article 91, 11 pages.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs.LG]

Matias Koskela, Kalle Immonen, Markku Mäkitalo, Alessandro Foi, Timo Viitanen,
Pekka Jääskeläinen, Heikki Kultala, and Jarmo Takala. 2019. Blockwise Multi-Order
Feature Regression for Real-Time Path-Tracing Reconstruction. ACM Trans. Graph.
38, 5, Article 138 (Jun 2019), 14 pages.

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika
Aittala, and Timo Aila. 2018. Noise2Noise: Learning Image Restoration without
Clean Data. In Proceedings of the 35th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 80). PMLR, 2965–2974.

Tzu-Mao Li, Yu-Ting Wu, and Yung-Yu Chuang. 2012. SURE-based optimization for
adaptive sampling and reconstruction. ACM Trans. Graph. 31, 6, Article 194 (Nov
2012), 9 pages.

Daqi Lin, Markus Kettunen, Benedikt Bitterli, Jacopo Pantaleoni, Cem Yuksel, and
Chris Wyman. 2022. Generalized Resampled Importance Sampling: Foundations of
ReSTIR. ACM Trans. Graph. 41, 4, Article 75 (Jul 2022), 23 pages.

Amazon Lumberyard. 2017. Amazon Lumberyard Bistro, Open Research Content
Archive (ORCA). http://developer.nvidia.com/orca/amazon-lumberyard-bistro

Michael Mara, Morgan McGuire, Benedikt Bitterli, and Wojciech Jarosz. 2017. An
Efficient Denoising Algorithm for Global Illumination. In Proceedings of High Per-
formance Graphics (HPG ’17). Association for Computing Machinery, Article 3,
7 pages.

Xiaoxu Meng, Quan Zheng, Amitabh Varshney, Gurprit Singh, and Matthias Zwicker.
2020. Real-time Monte Carlo Denoising with the Neural Bilateral Grid. In Eurograph-
ics Symposium on Rendering - DL-only Track. Eurographics Association, 13–24.

Sylvain Meunier and Takahiro Harada. 2022. Weighted À-Trous Linear Regression
(WALR) for Real-Time Diffuse Indirect Lighting Denoising. Technical Report 22-12-
1c2e. Advanced Micro Devices, Inc.

Bochang Moon, Nathan Carr, and Sung-Eui Yoon. 2014. Adaptive Rendering Based
on Weighted Local Regression. ACM Trans. Graph. 33, 5, Article 170 (Sep 2014),
14 pages.

Bochang Moon, Jose A. Iglesias-Guitian, Sung-Eui Yoon, and Kenny Mitchell. 2015.
Adaptive Rendering with Linear Predictions. ACM Trans. Graph. 34, 4, Article 121
(Jul 2015), 11 pages.

Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. 2021. Real-time
neural radiance caching for path tracing. ACM Trans. Graph. 40, 4, Article 36 (Jul
2021), 16 pages.

Diego Nehab, Pedro V. Sander, Jason Lawrence, Natalya Tatarchuk, and John R. Isidoro.
2007. Accelerating Real-Time Shading with Reverse Reprojection Caching. In Pro-
ceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics
Hardware (GH ’07). Eurographics Association, 25–35.

Kate Anderson Nicholas Hull and Nir Benty. 2017. NVIDIA Emerald Square, Open Re-
search Content Archive (ORCA). http://developer.nvidia.com/orca/nvidia-emerald-
square

NVIDIA. 2021. NVIDIA OptiX™ AI-Accelerated Denoiser. https://developer.nvidia.
com/optix-denoiser.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. In Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015. Springer International Publishing,
234–241.

Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2011. Adaptive Sampling and
Reconstruction Using Greedy Error Minimization. ACM Trans. Graph. 30, 6 (Dec
2011), 1–12.

David Ruppert and Matthew P Wand. 1994. Multivariate locally weighted least squares
regression. The annals of statistics (1994), 1346–1370.

Rohan Sawhney, Daqi Lin, Markus Kettunen, Benedikt Bitterli, Ravi Ramamoorthi,
Chris Wyman, and Matt Pharr. 2024. Decorrelating ReSTIR Samplers via MCMC
Mutations. ACM Trans. Graph. 43, 1, Article 10 (Jan 2024), 15 pages.

Daniel Scherzer, Stefan Jeschke, and Michael Wimmer. 2007. Pixel-Correct Shadow
Maps with Temporal Reprojection and Shadow Test Confidence. In Proceedings of
the 18th Eurographics Conference on Rendering Techniques (EGSR’07). Eurographics
Association, 45–50.

Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R. Alla
Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn, andMarco
Salvi. 2017. Spatiotemporal Variance-Guided Filtering: Real-Time Reconstruction
for Path-Traced Global Illumination. In Proceedings of High Performance Graphics
(HPG ’17). Association for Computing Machinery, Article 2, 12 pages.

Christoph Schied, Christoph Peters, and Carsten Dachsbacher. 2018. Gradient Estima-
tion for Real-Time Adaptive Temporal Filtering. Proc. ACM Comput. Graph. Interact.
Tech. 1, 2, Article 24 (Aug 2018), 16 pages.

Pradeep Sen and Soheil Darabi. 2012. On filtering the noise from the random parameters
in Monte Carlo rendering. ACM Trans. Graph. 31, 3, Article 18 (May 2012), 15 pages.

Manu Mathew Thomas, Gabor Liktor, Christoph Peters, Sungye Kim, Karthik
Vaidyanathan, and Angus G. Forbes. 2022. Temporally Stable Real-Time Joint
Neural Denoising and Supersampling. Proc. ACM Comput. Graph. Interact. Tech. 5,
3, Article 21 (Jul 2022), 22 pages.

ACM Trans. Graph., Vol. 43, No. 6, Article 221. Publication date: December 2024.

https://www.tensorflow.org/
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://arxiv.org/abs/1412.6980
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/nvidia-emerald-square
http://developer.nvidia.com/orca/nvidia-emerald-square
https://developer.nvidia.com/optix-denoiser
https://developer.nvidia.com/optix-denoiser

221:10 • Hajin Choi, Seokpyo Hong, Inwoo Ha, Nahyup Kang, and Bochang Moon

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. 2004. Image quality as-
sessment: from error visibility to structural similarity. IEEE Transactions on Image
Processing 13, 4 (2004), 600–612.

Bing Xu, Junfei Zhang, Rui Wang, Kun Xu, Yong-Liang Yang, Chuan Li, and Rui Tang.
2019. Adversarial Monte Carlo denoising with conditioned auxiliary feature modu-
lation. ACM Trans. Graph. 38, 6, Article 224 (Nov 2019), 12 pages.

Lei Yang, Shiqiu Liu, and Marco Salvi. 2020. A Survey of Temporal Antialiasing
Techniques. Computer Graphics Forum 39, 2 (2020), 607–621.

Jiaqi Yu, Yongwei Nie, Chengjiang Long, Wenju Xu, Qing Zhang, and Guiqing Li. 2021.
Monte Carlo denoising via auxiliary feature guided self-attention. ACM Trans.
Graph. 40, 6, Article 273 (Dec 2021), 13 pages.

Matthias Zwicker,Wojciech Jarosz, Jaakko Lehtinen, BochangMoon, Ravi Ramamoorthi,
Fabrice Rousselle, Pradeep Sen, Cyril Soler, and Sung-Eui Yoon. 2015. Recent
Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering.
Computer Graphics Forum (Proceedings of Eurographics - State of the Art Reports) 34,
2 (May 2015), 667–681.

ACM Trans. Graph., Vol. 43, No. 6, Article 221. Publication date: December 2024.

Online Neural Denoising with Cross-Regression for Interactive Rendering • 221:11

Bistro

0.9712 / 0.4493 0.9632 / 0.1676 1.6054 / 0.2463 0.0744 / 0.1446 0.7867 / 0.1839 0.0348 / 0.1177 relL2 / 1−SSIM
Bistro Dynamic

0.4749 / 0.4673 0.1587 / 0.1452 0.1840 / 0.2076 0.0242 / 0.1457 0.0811 / 0.1692 0.0203 / 0.1065 relL2 / 1−SSIM
Emerald Square

0.6993 / 0.2643 0.3194 / 0.2375 0.5914 / 0.3242 0.1863 / 0.2051 0.3097 / 0.2401 0.0524 / 0.1539 relL2 / 1−SSIM
Staircase

0.2043 / 0.3004 0.0134 / 0.0629 0.0241 / 0.1227 0.0078 / 0.0810 0.0175 / 0.1028 0.0049 / 0.0417 relL2 / 1−SSIM
Music Room

1.7905 / 0.5177

(a) ReSTIR PT

0.3969 / 0.0962

(b) SVGF

0.0884 / 0.1328

(c) BMFR

0.0168 / 0.0999

(d) OptiX

0.0484 / 0.1081

(e) NBG

0.0133 / 0.0716

(f) Ours

relL2 / 1−SSIM
(g) Reference

Fig. 6. Comparisons with classical methods (SVGF and BMFR) and supervised learning techniques (OptiX and NBG) for the unbiased input (ReSTIR PT).

SVGF (b) and BMFR (c) preserve geometric edges due to the use of G-buffers, but they tend to blur edges introduced by illumination changes, such as shadows.

OptiX (d) and NBG (e) maintain such complex edges more effectively than the classical methods, thanks to their use of neural networks. Our method (f)

produces visually sharp denoising results while preserving geometric and non-geometric edges, similar to the supervised methods. However, this capability is

achieved through a different learning strategy, i.e., online learning, without the need for external training datasets. All images are from the 100th frame of

each animated sequence. 3D models courtesy of [Lumberyard 2017] (Bistro and Bistro Dynamic), [Nicholas Hull and Benty 2017] (Emerald Square), and

Wig42 (Staircase).

ACM Trans. Graph., Vol. 43, No. 6, Article 221. Publication date: December 2024.

221:12 • Hajin Choi, Seokpyo Hong, Inwoo Ha, Nahyup Kang, and Bochang Moon

re
lL
2

0 50 100 150 200 250 300
frame

1e-1

1e0

1e1

1e2
Bistro

ReSTIR PT

SVGF

BMFR

OptiX

NBG

Ours

0 50 100 150 200 250 300
frame

1e-2

1e-1

1e0

Bistro Dynamic

ReSTIR PT

SVGF

BMFR

OptiX

NBG

Ours

0 50 100 150 200 250 300
frame

1e-1

1e0

1e1

1e2

1e3

Emerald Square

ReSTIR PT

SVGF

BMFR

OptiX

NBG

Ours

0 50 100 150 200 250 300
frame

1e-2

1e-1

1e0

1e1

1e2

Staircase

ReSTIR PT

SVGF

BMFR

OptiX

NBG

Ours

0 50 100 150 200 250 300
frame

1e-2

1e-1

1e0

Music Room

ReSTIR PT

SVGF

BMFR

OptiX

NBG

Ours

1−
SS
IM

0 50 100 150 200 250 300
frame

0.10

0.20

0.30

0.40

0.50

0.60
Bistro

ReSTIR PT

SVGF

BMFR

OptiX

NBG

Ours

0 50 100 150 200 250 300
frame

0.20

0.40

0.60

Bistro Dynamic

ReSTIR PT

SVGF

BMFR

OptiX

NBG

Ours

0 50 100 150 200 250 300
frame

0.10

0.20

0.30

0.40

0.50
Emerald Square

ReSTIR PT

SVGF

BMFR

OptiX

NBG

Ours

0 50 100 150 200 250 300
frame

0.10

0.20

0.30

0.40

0.50

Staircase

ReSTIR PT

SVGF

BMFR

OptiX

NBG

Ours

0 50 100 150 200 250 300
frame

0.20

0.40

0.60

0.80

Music Room

ReSTIR PT

SVGF

BMFR

OptiX

NBG

Ours

Fig. 7. Relative L2 (relL2) and 1−SSIM comparisons of denoising methods for the five scenes, each containing 300 animated frames.

Bistro Dynamic

0.4749 / 0.4673
(a) ReSTIR PT

0.0240 / 0.1302
(b) Ours

(regression)

0.0330 / 0.1614
(c) Ours

(neural net.)

0.0203 / 0.1065
(d) Ours
(both)

relL2 / 1−SSIM
(e) Reference

Fig. 8. Ablation studies of our framework, which consists of cross-regression and a neural network with spatiotemporal filtering. Testing cross-regression or

the neural network alone results in either under-blurred (b) or over-blurred results (c), compared to our chosen design that combines both (d). We show images

from the 100th frame of the animated sequence for the Bistro Dynamic scene. 3D model courtesy of [Lumberyard 2017].

Staircase

(a) ReSTIR PT (b) SVGF (c) BMFR (d) OptiX

(e) NBG (f) Ours (g) Reference

Fig. 9. Failure cases of tested denoisers, (b) to (f), for their unbiased input (a) produced by ReSTIR PT using spatiotemporal resampling. None of the tested

denoisers can robustly handle correlated outliers (i.e., fireflies) in the input, resulting in noticeable denoising artifacts, i.e., bright spots in their results. The

images above are taken from the 148th frame of the animated sequence for the Staircase scene, where the artifacts are clearly visible. 3D model courtesy of

Wig42.

ACM Trans. Graph., Vol. 43, No. 6, Article 221. Publication date: December 2024.

	Abstract
	1 Introduction
	2 Related work
	3 Background
	4 Online Neural Denoising with cross-regression
	4.1 Cross-Regression
	4.2 Our Denoising Neural Network
	4.3 Online Learning of Our Denoising Neural Network
	4.4 Network and Training Details

	5 results and discussion
	6 Conclusion
	Acknowledgments
	References

