-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_En-ViT.py
312 lines (282 loc) · 13.6 KB
/
main_En-ViT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import os
import argparse
import random
import numpy as np
import pandas as pd
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
import torch.nn.functional as F
import xgboost as xgb
from vit_pytorch import ViT
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score, f1_score, matthews_corrcoef
from utils_model.get_Mydataset import Mydataset
from utils_model.earlystop import EarlyStopping
from utils_model.model_metrics import metrics
import warnings
warnings.filterwarnings("ignore")
def Data_loader(data, label):
dataset = Mydataset(data, label, multichannel=True)
data_loader = DataLoader(dataset, batch_size=64, shuffle=True)
return data_loader
def binary_train(model, train_loader, device, lr):
optimizer = optim.Adagrad(model.parameters(), lr = lr)
model.train()
optimizer.zero_grad()
train_loss = []
pred_score = []
pred_label = []
real_label = []
for batch_index, (data, label) in enumerate(train_loader):
data, label = data.to(device), label.squeeze().to(device)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, label)
# loss = F.binary_cross_entropy(output, label)
loss.backward()
optimizer.step()
train_loss.append(loss.item())
score = F.softmax(output)
_, pred = torch.max(score,1)
for i in pred:
pred_label.append(i.detach().cpu())
for i in label:
real_label.append(i.detach().cpu())
for i in score:
pred_score.append(i[1].detach().cpu())
metric = metrics(real_label, pred_label)
train_acc, train_auc, train_precision, train_recall, train_f1_score, train_mcc = metric.binary_metrics(pred_score)
return np.average(train_loss), train_acc
def binary_test(model, test_loder, device, save):
model.eval()
test_loss = []
pred_score = []
pred_label = []
real_label = []
for batch_index, (data, label) in enumerate(test_loder):
data, label = data.to(device), label.squeeze().to(device)
output = model(data)
loss = F.cross_entropy(output, label)
test_loss.append(loss.item())
score = F.softmax(output)
_, pred = torch.max(score,1)
for i in pred:
pred_label.append(i.detach().cpu())
for i in label:
real_label.append(i.detach().cpu())
for i in score:
pred_score.append(i[1].detach().cpu())
metric = metrics(real_label, pred_label)
test_acc, test_auc, test_precision, test_recall, test_f1_score, test_mcc = metric.binary_metrics(pred_score)
if save:
return real_label, pred_label
else:
return np.average(test_loss), test_acc
def multicalss_train(model, train_loader, device, lr):
optimizer = optim.Adagrad(model.parameters(), lr = lr)
model.train()
optimizer.zero_grad()
train_loss = []
pred_label = []
real_label = []
for batch_index, (data, label) in enumerate(train_loader):
data, label = data.to(device), label.squeeze().to(device)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, label)
loss.backward()
optimizer.step()
train_loss.append(loss.item())
score = F.softmax(output)
_, pred = torch.max(score,1)
for i in pred:
pred_label.append(i.detach().cpu())
for i in label:
real_label.append(i.detach().cpu())
metric = metrics(real_label, pred_label)
train_acc, train_f1_weight, train_f1_macro, train_cm, train_report = metric.multi_metrics()
return np.average(train_loss), train_acc
def multicalss_test(model, test_loder, device, save):
model.eval()
test_loss = []
pred_label = []
real_label = []
for batch_index, (data, label) in enumerate(test_loder):
data, label = data.to(device), label.squeeze().to(device)
output = model(data)
loss = F.cross_entropy(output, label)
test_loss.append(loss.item())
score = F.softmax(output)
_, pred = torch.max(score,1)
for i in pred:
pred_label.append(i.detach().cpu())
for i in label:
real_label.append(i.detach().cpu())
metric = metrics(real_label, pred_label)
test_acc, test_f1_weight, test_f1_macro, test_cm, test_report = metric.multi_metrics()
if save:
return real_label, pred_label
else:
return np.average(test_loss), test_acc
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--n_class', default=2, type=int,
help="Input your number of sample class")
parser.add_argument('--patch', default=10, type=int,
help="Input the size of the patch into which the image is segmented")
parser.add_argument('--ensembl', default=0, type=int,
help="Choosing whether to use ensemble learning will significantly increase the training time of the model, but it does not guarantee that the performance will improve. 0: OFF, 1: ON.”")
parser.add_argument('--note', default="none", type=str,
help="Add notes to your task")
args = parser.parse_args()
dataset = args.note
patch = args.patch # 3
lr = 5e-5 # 5e-5
depth = 8 # 5e-5
heads = 16 # 5e-5
mlp_dim = 2048
random_state = 0
try:
path = os.getcwd()
model_output = path + '/results_classification/%s_rand_%s_patch_%s_lr_%s_depth_%s_heads_%s_mlp_%s'%(dataset, random_state, patch, lr, depth, heads, mlp_dim)
os.makedirs(model_output)
except:
pass
device = "cuda" if torch.cuda.is_available() else "cpu"
epochs = 10000
patience = 2000
fold = 5
data = np.load("./results_map/5.IE-MOIF_Transformed_Data_0.npy")
label = np.load("./results_preprocessing/5.Data_label.npy")
if data.shape[2] == data.shape[3]:
pass
else:
zero_padding = np.zeros((data.shape[0],data.shape[1],data.shape[2],data.shape[2]-data.shape[3]))
data = np.concatenate((data, zero_padding), axis=3)
skf = StratifiedKFold(n_splits=fold, shuffle=True, random_state=random_state)
ACC = []
F1 = []
MCC = []
F1_weighted = []
F1_macro = []
if args.ensembl == 0:
for fold, (idx_train, idx_test) in enumerate(skf.split(data, label)):
model = ViT(
channels = data.shape[1],
image_size = data.shape[2],
patch_size = patch,
num_classes = int(args.n_class),
dim = 1024,
depth = depth,
heads = heads,
mlp_dim = mlp_dim,
dropout = 0.1,
emb_dropout = 0.1).to(device)
train_loader = Data_loader(data[idx_train], label[idx_train])
test_loader = Data_loader(data[idx_test], label[idx_test])
early_stopping = EarlyStopping(patience=patience, verbose=True, delta = 0.0001, path='%s/IE-MOIF_fold_%s.model'%(model_output,fold+1))
for epoch in range(epochs):
if args.n_class == 2:
t_loss, t_acc = binary_train(model, train_loader, device, lr = lr)
v_loss, v_acc = binary_test(model, test_loader, device, 0)
else:
t_loss, t_acc = multicalss_train(model, train_loader, device, lr = lr)
v_loss, v_acc = multicalss_test(model, test_loader, device, 0)
print("Fold:{} \t Train Epoch:{} \t Train Loss: {:.4f} \t Train Accuracy: {:.4f} \t Valid Loss: {:.4f} \t Valid ACC: {:.4f}".format(fold+1, epoch, t_loss, t_acc, v_loss, v_acc))
early_stopping(1 - v_acc, model)
if early_stopping.early_stop:
print("Early stopping!!!")
break
model.load_state_dict(torch.load('%s/IE-MOIF_fold_%s.model'%(model_output,fold+1)))
if args.n_class == 2:
test_real_label, test_pred_label = binary_test(model, test_loader, device, 1)
ACC.append(accuracy_score(test_real_label, test_pred_label))
F1.append(f1_score(test_real_label, test_pred_label))
MCC.append(matthews_corrcoef(test_real_label, test_pred_label))
else:
test_real_label, test_pred_label = multicalss_test(model, test_loader, device, 1)
ACC.append(accuracy_score(test_real_label, test_pred_label))
F1_weighted.append(f1_score(test_real_label, test_pred_label, average='weighted'))
F1_macro.append(f1_score(test_real_label, test_pred_label, average='macro'))
else:
for fold, (idx_train, idx_test) in enumerate(skf.split(data, label)):
fold = fold+1
train_loader = Data_loader(data[idx_train], label[idx_train])
test_loader = Data_loader(data[idx_test], label[idx_test])
train_pred = []
test_pred = []
for block in range(9,13):
model = ViT(
channels = data.shape[1],
image_size = data.shape[2],
patch_size = patch,
num_classes = int(args.n_class),
dim = 1024,
depth = block,
heads = heads,
mlp_dim = mlp_dim,
dropout = 0.1,
emb_dropout = 0.1).to(device)
early_stopping = EarlyStopping(patience=patience, verbose=True, delta = 0.0001, path='%s/IE-MOIF_fold_%s_model_%s.model'%(model_output,fold,block))
for epoch in range(epochs):
if args.n_class == 2:
t_loss, t_acc = binary_train(model, train_loader, device, lr = lr)
v_loss, v_acc = binary_test(model, test_loader, device, 0)
else:
t_loss, t_acc = multicalss_train(model, train_loader, device, lr = lr)
v_loss, v_acc = multicalss_test(model, test_loader, device, 0)
print("Fold:{} \t Model: {} Train Epoch:{} \t Train Loss: {:.4f} \t Train Accuracy: {:.4f} \t Valid Loss: {:.4f} \t Valid ACC: {:.4f}".format(fold, block, epoch, t_loss, t_acc, v_loss, v_acc))
early_stopping(1 - v_acc, model)
if early_stopping.early_stop:
print("Early stopping!!!")
break
model.load_state_dict(torch.load('%s/IE-MOIF_fold_%s_model_%s.model'%(model_output,fold,block)))
if args.n_class == 2:
train_real_label, train_pred_label = binary_test(model, train_loader, device, 1)
test_real_label, test_pred_label = binary_test(model, test_loader, device, 1)
train_pred.append(train_pred_label)
test_pred.append(test_pred_label)
print("train acc: %s\t test acc: %s"%(accuracy_score(train_real_label, train_pred_label), accuracy_score(test_real_label, test_pred_label)))
else:
train_real_label, train_pred_label = multicalss_test(model, train_loader, device, 1)
test_real_label, test_pred_label = multicalss_test(model, test_loader, device, 1)
train_pred.append(train_pred_label)
test_pred.append(test_pred_label)
if args.n_class == 2:
LR = xgb.XGBClassifier(
learning_rate=0.1,
n_estimators=500,
objective='binary:logistic')
LR.fit(np.array(train_pred).T, label[idx_train])
pred_label = LR.predict(np.array(test_pred).T)
ACC.append(accuracy_score(label[idx_test], pred_label))
F1.append(f1_score(label[idx_test], pred_label))
MCC.append(matthews_corrcoef(label[idx_test], pred_label))
else:
LR = xgb.XGBClassifier(
learning_rate=0.1,
n_estimators=500,
objective = 'multi:softproba')
LR.fit(np.array(train_pred).T, label[idx_train])
pred_label = LR.predict(np.array(test_pred).T)
ACC.append(accuracy_score(label[idx_test], pred_label))
F1_weighted.append(f1_score(label[idx_test], pred_label, average='weighted'))
F1_macro.append(f1_score(label[idx_test], pred_label, average='macro'))
print(len(ACC), len(F1), len(MCC))
try:
model_report = pd.DataFrame(
{
"Fold": [i for i in range(1,6)] ,
"ACC": ACC,
"F1": F1,
"MCC": MCC,
}).to_csv("%s/IE-MOIF_report_%s.csv"%(model_output,dataset), index=False)
except:
model_report = pd.DataFrame(
{
"Fold": [i for i in range(1,6)] ,
"ACC": ACC,
"F1_weighted": F1_weighted,
"F1_macro": F1_macro,
}).to_csv("%s/IE-MOIF_report_%s.csv"%(model_output,dataset), index=False)