-
Notifications
You must be signed in to change notification settings - Fork 2
/
optimize_for_inference.py
165 lines (137 loc) · 5.15 KB
/
optimize_for_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# pylint: disable=g-bad-file-header
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Removes parts of a graph that are only needed for training.
There are several common transformations that can be applied to GraphDefs
created to train a model, that help reduce the amount of computation needed when
the network is used only for inference. These include:
- Removing training-only operations like checkpoint saving.
- Stripping out parts of the graph that are never reached.
- Removing debug operations like CheckNumerics.
- Folding batch normalization ops into the pre-calculated weights.
- Fusing common operations into unified versions.
This script takes either a frozen binary GraphDef file (where the weight
variables have been converted into constants by the freeze_graph script), or a
text GraphDef proto file (the weight variables are stored in a separate
checkpoint file), and outputs a new GraphDef with the optimizations applied.
If the input graph is a text graph file, make sure to include the node that
restores the variable weights in output_names. That node is usually named
"restore_all".
An example of command-line usage is:
bazel build tensorflow/python/tools:optimize_for_inference && \
bazel-bin/tensorflow/python/tools/optimize_for_inference \
--input=frozen_inception_graph.pb \
--output=optimized_inception_graph.pb \
--frozen_graph=True \
--input_names=Mul \
--output_names=softmax
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import sys
from google.protobuf import text_format
from tensorflow.core.framework import graph_pb2
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import graph_io
from tensorflow.python.platform import app
from tensorflow.python.platform import gfile
from tensorflow.python.tools import optimize_for_inference_lib
FLAGS = None
def main(unused_args):
if not gfile.Exists(FLAGS.input):
print("Input graph file '" + FLAGS.input + "' does not exist!")
return -1
input_graph_def = graph_pb2.GraphDef()
with gfile.Open(FLAGS.input, "rb") as f:
data = f.read()
if FLAGS.frozen_graph:
input_graph_def.ParseFromString(data)
else:
text_format.Merge(data.decode("utf-8"), input_graph_def)
output_graph_def = optimize_for_inference_lib.optimize_for_inference(
input_graph_def,
FLAGS.input_names.split(","),
FLAGS.output_names.split(","),
_parse_placeholder_types(FLAGS.placeholder_type_enum),
FLAGS.toco_compatible)
if FLAGS.frozen_graph:
f = gfile.FastGFile(FLAGS.output, "w")
f.write(output_graph_def.SerializeToString())
else:
graph_io.write_graph(output_graph_def,
os.path.dirname(FLAGS.output),
os.path.basename(FLAGS.output))
return 0
def _parse_placeholder_types(values):
"""Extracts placeholder types from a comma separate list."""
values = [int(value) for value in values.split(",")]
return values if len(values) > 1 else values[0]
def parse_args():
"""Parses command line arguments."""
parser = argparse.ArgumentParser()
parser.register("type", "bool", lambda v: v.lower() == "true")
parser.add_argument(
"--input",
type=str,
default="",
help="TensorFlow \'GraphDef\' file to load.")
parser.add_argument(
"--output",
type=str,
default="",
help="File to save the output graph to.")
parser.add_argument(
"--input_names",
type=str,
default="",
help="Input node names, comma separated.")
parser.add_argument(
"--output_names",
type=str,
default="",
help="Output node names, comma separated.")
parser.add_argument(
"--frozen_graph",
nargs="?",
const=True,
type="bool",
default=True,
help="""\
If true, the input graph is a binary frozen GraphDef
file; if false, it is a text GraphDef proto file.\
""")
parser.add_argument(
"--placeholder_type_enum",
type=str,
default=str(dtypes.float32.as_datatype_enum),
help="""\
The AttrValue enum to use for placeholders.
Or a comma separated list, one value for each placeholder.\
""")
parser.add_argument(
"--toco_compatible",
type=bool,
default=False,
help="""\
If true, only use ops compatible with Tensorflow
Lite Optimizing Converter.\
""")
return parser.parse_known_args()
if __name__ == "__main__":
FLAGS, unparsed = parse_args()
app.run(main=main, argv=[sys.argv[0]] + unparsed)