-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathd3-means.py
executable file
·36 lines (31 loc) · 1.03 KB
/
d3-means.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#!/usr/bin/env python3
#
# Calculates statistics about the means reported in the midpoints data.
#
import numpy as np
import base
nooocytes = True
qand = ' and cell != "Oocyte"' if nooocytes else ''
# Query db
na, ni = [], []
va, vi = [], []
with base.connect() as con:
c = con.cursor()
q = f'select vi from midpoints_wt where ni > 0 {qand}'
vi = np.array([row['vi'] for row in c.execute(q)])
q = f'select va from midpoints_wt where na > 0 {qand}'
va = np.array([row['va'] for row in c.execute(q)])
# Calculate
print('Mean midpoint of inactivation')
print(f'Min: {np.min(vi)}')
print(f'Max: {np.max(vi)}')
print(f'Median: {np.median(vi):.1f}')
print(f'Range: {np.max(vi) - np.min(vi):.1f}')
print(f'90th p: {np.percentile(vi, 95) - np.percentile(vi, 5):.1f}')
print()
print('Mean midpoint of activation')
print(f'Min: {np.min(va)}')
print(f'Max: {np.max(va)}')
print(f'Median: {np.median(va):.1f}')
print(f'Range: {np.max(va) - np.min(va):.1f}')
print(f'90th p: {np.percentile(va, 95) - np.percentile(va, 5):.1f}')