-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathtsne.py
174 lines (145 loc) · 5.56 KB
/
tsne.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import json
import os
from pathlib import Path
from os.path import join as pjoin
import numpy as np
import pytorch_lightning as pl
import torch
from rich.progress import track
from omegaconf import OmegaConf
from mld.data.utils import a2m_collate
from torch.utils.data import DataLoader
from mld.callback import ProgressLogger
from mld.config import parse_args
from mld.data.get_data import get_datasets
from mld.models.get_model import get_model
from mld.utils.logger import create_logger
import sklearn
from sklearn.manifold import TSNE
# from keras.datasets import mnist
from sklearn.datasets import load_iris
from numpy import reshape
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
def data_parse(step: int, latents: np.ndarray, classids: list):
nsample = 30
# classids = list(range(0,12))
nclass = len(classids)
# (12, 50, 50, 256)
t_0 = latents[classids,:nsample, step,:]
t_0 = t_0.reshape(-1, t_0.shape[-1])
# labels = np.array(list(range(0,nclass)))
# labels = labels.repeat(nsample)
labels = np.array(['sit', 'lift_dumbbell', 'turn_steering'])
labels = labels.repeat(nsample)
# labels = [['sit']* nsample,['lift_dumbbell']* nsample, ['turn steering wheel']* nsample]
# labels = labels * nsample
tsne = TSNE(n_components=2, verbose=0, random_state=123)
z = tsne.fit_transform(t_0)
df = pd.DataFrame()
# normalize
z = 1.8*(z-np.min(z,axis=0))/(np.max(z,axis=0)-np.min(z,axis=0)) -0.9
df["y"] = labels
df["comp-1"] = z[:,0]
df["comp-2"] = z[:,1]
return df
def drawFig(output_dir: str, latents: np.ndarray, classids: list = [8,6,5], steps: list = [0, 15, 35, 49] ):
'''
Draw the figure of t-SNE
Parameters:
output_dir: output directory
latents: (12, 50, 50, 256)
steps: list of diffusion steps to draw
classids: list of class ids
# 0: "warm_up",
# 1: "walk",
# 2: "run",
# 3: "jump",
# 4: "drink",
# 5: "lift_dumbbell",
# 6: "sit",
# 7: "eat",
# 8: "turn steering wheel",
# 9: "phone",
# 10: "boxing",
# 11: "throw",
'''
sns.set()
fig, axs = plt.subplots(1, 4, figsize=(4*3,2.5))
nclass = len(classids)
steps.sort(reverse=True)
for i, step in enumerate(steps):
df = data_parse(steps[0]-step,latents,classids)
sns.scatterplot(ax=axs[i], x="comp-1", y="comp-2", hue='y',
legend = False if i != len(steps) -1 else True,
palette=sns.color_palette("hls", nclass),
data=df).set(title=r"t = {}".format(step))
axs[i].set_xlim((-1, 1))
axs[i].set_ylim((-1, 1))
plt.legend(loc=[1.1,0.2], title='Action ID')
plt.tight_layout()
plt.savefig(pjoin(output_dir, 'TSNE.png'), bbox_inches='tight')
plt.show()
def main():
# parse options
cfg = parse_args(phase="test") # parse config file
cfg.FOLDER = cfg.TEST.FOLDER
# create logger
logger = create_logger(cfg, phase="test")
output_dir = Path(
os.path.join(cfg.FOLDER, str(cfg.model.model_type), str(cfg.NAME),
"tsne_" + cfg.TIME))
output_dir.mkdir(parents=True, exist_ok=True)
logger.info(OmegaConf.to_yaml(cfg))
# set seed
pl.seed_everything(cfg.SEED_VALUE)
# gpu setting
if cfg.ACCELERATOR == "gpu":
# os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(
# str(x) for x in cfg.DEVICE)
os.environ["PYTHONWARNINGS"] = "ignore"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# create dataset
dataset = get_datasets(cfg, logger=logger, phase="test")[0]
logger.info("datasets module {} initialized".format("".join(
cfg.TRAIN.DATASETS)))
subset = 'train'.upper()
split = eval(f"cfg.{subset}.SPLIT")
split_file = pjoin(
eval(f"cfg.DATASET.{dataset.name.upper()}.SPLIT_ROOT"),
eval(f"cfg.{subset}.SPLIT") + ".txt",
)
dataloader = DataLoader(dataset.Dataset(split_file=split_file,split=split,**dataset.hparams),batch_size=8,collate_fn=a2m_collate)
# create model
model = get_model(cfg, dataset)
logger.info("model {} loaded".format(cfg.model.model_type))
# loading state dict
logger.info("Loading checkpoints from {}".format(cfg.TEST.CHECKPOINTS))
state_dict = torch.load(cfg.TEST.CHECKPOINTS,
map_location="cpu")["state_dict"]
model.load_state_dict(state_dict)
model = model.eval()
# Device
if cfg.ACCELERATOR == "gpu":
device = torch.device("cuda")
model = model.to(device)
# Generate latent codes
with torch.no_grad():
labels = torch.tensor(np.array(list(range(0,dataset.nclasses)))).unsqueeze(1).to(device)
lengths = torch.tensor([60]*dataset.nclasses).to(device)
z_list = []
for i in track(range(50),'Generating latent codes'):
cond_emb = torch.cat((torch.zeros_like(labels), labels))
# [steps, classes, latent_dim]
z = model._diffusion_reverse_tsne(cond_emb, lengths)
z_list.append(z)
# [samples, steps, classes, latent_dim] -> [classes, samples, steps, latent_dim]
latents = torch.stack(z_list, dim=0).permute(2,0,1,3).cpu().numpy()
print(latents.shape)
# Draw figure
drawFig(output_dir, latents, classids = [8,6,5], steps = [0, 15, 35, 49])
logger.info("TSNE figure saved to {}".format(output_dir))
if __name__ == "__main__":
main()