-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathStockPriceForecasting-MLP.py
540 lines (470 loc) · 22.6 KB
/
StockPriceForecasting-MLP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
'''
Project Name: Multi-Layer Perceptron (MLP), and Long-Short Term Memory (LSTMs) for stock price forecasting
This is a sample program to demonstrate the implementation that leverage Tensorflow to construct a MLP for stock price forecasting.
Environments:
1. Tensorflow version 1.1
2. Python version 3.6
Warning:
1. The program just converted from TensorFlow r0.12 to r1.1. Potential defects may exist.
2. The program output need to be reviewed again. This is only a reference code for you to deal with your own data and apply to your own application.
@author: Cheng-Lin Li a.k.a. Clark
@copyright: 2017 Cheng-Lin Li@University of Southern California. All rights reserved.
@license: Licensed under the GNU v3.0. https://www.gnu.org/licenses/gpl.html
@contact: clark.cl.li@gmail.com
@version: 1.8
@create: November, 29, 2016
@updated: May, 17, 2017
'''
# coding: utf-8
# # Stock Price Forecasting by Multi-Layer Perceptron (MLP)
# This project will leverage the power of feedforward and back-prpagation neural network (NN) / Multi-Layer Perceptron (MLP) on Stock Price prediction.
#
# Multi-Layer Perceptron (MLP) will be a based line of performance as the benchmark.
#
# ### Dataset Description:
# #### 1. Title
#
# : Weekly stock data for Dow Jones Index
#
# #### 2. Source:
#
# This dataset comprises data reported by the major stock exchanges.
#
# #### 3. Past Usage
# This dataset was first used in:
#
# Brown, M. S., Pelosi, M. & Dirska, H. (2013). Dynamic-radius Species-conserving Genetic Algorithm for
# the Financial Forecasting of Dow Jones Index Stocks. Machine Learning and Data Mining in Pattern
# Recognition, 7988, 27-41.
#
# #### 4. Relevant Information
# In predicting stock prices you collect data over some period of time - day, week, month, etc. But you cannot take advantage of data from a time period until the next increment of the time period. For example, assume you collect data daily. When Monday is over you have all of the data for that day. However you can invest on Monday, because you don't get the data until the end of the day. You can use the data from Monday to invest on Tuesday.
#
# In our research each record (row) is data for a week. Each record also has the percentage of return that stock has in the following week (percent_change_next_weeks_price). Ideally, you want to determine which stock will produce the greatest rate of return in the following week. This can help you train and test your algorithm.
#
# Training data vs Test data:
# In (Brown, Pelosi & Dirska, 2013) we used quarter 1 (Jan-Mar) data for training and quarter 2 (Apr-Jun) data for testing.
#
# Interesting data points:
# If you use quarter 2 data for testing, you will notice something interesting in the week ending 5/27/2011 every Dow Jones Index stock lost money.
#
# The Dow Jones Index stocks change over time. We indexed them as below sequence. The stocks that made up the index in 2011 were:
# 0. 3M MMM
# 1. American Express AXP
# 2. Alcoa AA
# 3. AT&T T
# 4. Bank of America BAC
# 5. Boeing BA
# 6. Caterpillar CAT
# 7. Chevron CVX
# 8. Cisco Systems CSCO
# 9. Coca-Cola KO
# 10. DuPont DD
# 11. ExxonMobil XOM
# 12. General Electric GE
# 13. Hewlett-Packard HPQ
# 14. The Home Depot HD
# 15. Intel INTC
# 16. IBM IBM
# 17. Johnson & Johnson JNJ
# 18. JPMorgan Chase JPM
# 19. Kraft KRFT
# 20. McDonald's MCD
# 21. Merck MRK
# 22. Microsoft MSFT
# 23. Pfizer PFE
# 24. Procter & Gamble PG
# 25. Travelers TRV
# 26. United Technologies UTX
# 27. Verizon VZ
# 28. Wal-Mart WMT
# 29. Walt Disney DIS
#
# #### 5. Number of Instances
#
# There are 750 data records. 360 are from the first quarter of the year (Jan to Mar).
# 390 are from the second quarter of the year (Apr to Jun).
#
# #### 6. Number of Attributes
#
# There are 15 attributes.
#
# #### 7. For each Attribute
#
# a. quarter: the yearly quarter (1 = Jan-Mar; 2 = Apr=Jun).
# b. stock: the stock symbol (see above)
# c. date: the last business day of the work (this is typically a Friday)
# d. open: the price of the stock at the beginning of the week
# e. high: the highest price of the stock during the week
# f. low: the lowest price of the stock during the week
# g. close: the price of the stock at the end of the week
# h. volume: the number of shares of stock that traded hands in the week
# i. percent_change_price: the percentage change in price throughout the week
# j. percent_chagne_volume_over_last_wek: the percentage change in the number of shares of stock that traded hands for this week compared to the previous week
# k. previous_weeks_volume: the number of shares of stock that traded hands in the previous week
# l. days_to_next_dividend: the number of days until the next dividend
# m. percent_return_next_dividend: the percentage of return on the next dividend
# n. ISM: ISM Manufacturing Index is based on surveys of more than 300 manufacturing firms by the Institute of Supply Management. The ISM Manufacturing Index monitors employment, production, inventories, new orders and supplier deliveries. A composite diffusion index monitors conditions in national manufacturing and is based on the data from these surveys.
# o. PCE: Personal Consumption Expenditure Price Index. It release every month.
#
# ###### Below data is for performance verification labels.
#
# p. next_weeks_open: the opening price of the stock in the following week
# q. next_weeks_close: the closing price of the stock in the following week
# r. percent_change_next_weeks_price: the percentage change in price of the stock in the following week
#
# ### Below program will read dataset and label into matrix.
# In[1]:
# Support for Python 2.7
# from __future__ import absolute_import
# from __future__ import division
# from __future__ import print_function
import argparse
import sys
import tensorflow as tf
import numpy as np
# Parameters for input data
FILE_NAME = 'dow_jones_index.csv'
RECORD_NUMBER = 15
STOCK_NUMBER = 30
def getInputData(filename):
_data = np.genfromtxt(filename, delimiter = ',')
_data_date = 0;
_X = [] #Stock information for each period. [P1[s0001,s0002,s0003,...s0015,s0101,s0102,...s0115,...s3001, ...,s3015], P2[], P3[]...]
_Y = [] #Price trend for next week for each peroid. [P1[-1, -1, 1,1,1,0,-1,...i30],P2[],P3[]...]
_x = []
_y = []
_Z = [] #store the value of percent_change_next_weeks_price
_z = []
#print('_data=', _data)
for i in range(1, len(_data)): # Range from 1 to ignore first heading row.
if(_data_date != _data[i][2]): #if the data is different date, create a new row for them.
_data_date = _data[i][2] #Get date information
if(len(_x) != 0) :
_X.append(_x)
_Y.append(_y)
_Z.append(_z)
else:
pass
_x = list(_data[i][:RECORD_NUMBER])
if(_data[i][-1] > 0): # if stock price increase in next week.
_y = [1]
_z = [_data[i][-1]]
elif (_data[i][-1] < 0): # if stock price decrease in next week.
_y = [-1]
_z = [_data[i][-1]]
else: # if stock price keep flat in next week.
_y = [0]
_z = [_data[i][-1]]
else:
_x.extend(_data[i][:RECORD_NUMBER])
if(_data[i][-1] > 0): #last data field is label, percent_change_next_weeks_price
_y.extend([1])
_z.extend([_data[i][-1]])
elif (_data[i][-1] < 0):
_y.extend([-1])
_z.extend([_data[i][-1]])
else:
_y.extend([0])
_z.extend([_data[i][-1]])
_X.append(_x)
_Y.append(_y)
_Z.append(_z)
return np.array(_X), np.array(_Y), np.array(_Z)
def getInputDataMaxY(filename):
_data = np.genfromtxt(filename, delimiter = ',')
_data_date = 0;
_X = [] #Stock information for each period. [P1[s0001,s0002,s0003,...s0015,s0101,s0102,...s0115,...s3001, ...,s3015], P2[], P3[]...]
_Y = [] #Price trend for next week for each peroid. [P1[-1, -1, 1,1,1,0,-1,...i30],P2[],P3[]...]
_x = []
_y = []
_Z = [] #store the value of percent_change_next_weeks_price
_z = []
_idx = 0
_max_idx = 0
_max_y = 0
#print('_data=', _data)
for i in range(1, len(_data)): # Range from 1 to ignore first heading row.
if(_data_date != _data[i][2]): #if the data is different date, create a new row for them.
_data_date = _data[i][2] #Get date information
if(len(_x) != 0) :
_y[_max_idx] = 1
_max_idx = 0
_max_y = 0
_idx = 0
_X.append(_x)
_Y.append(_y)
_Z.append(_z)
else:
pass
_x = list(_data[i][:RECORD_NUMBER])
if(_data[i][-1] > 0 and _data[i][-1] > _max_y): # if stock price increase in next week and the percentage is higher than other stocks.
_max_y = _data[i][-1]
_max_idx = _idx
else: pass
_y = [0]
_z = [_data[i][-1]]
_idx += 1
else:
_x.extend(_data[i][:RECORD_NUMBER])
if(_data[i][-1] > 0 and _data[i][-1] > _max_y): # if stock price increase in next week and the percentage is higher than other stocks.
_max_y = _data[i][-1]
_max_idx = _idx
else: pass
_y.extend([0])
_z.extend([_data[i][-1]])
_idx += 1
_y[_max_idx] = 1 #label for last week of data
_X.append(_x)
_Y.append(_y)
_Z.append(_z)
return np.array(_X), np.array(_Y), np.array(_Z)
def getInputData4DXMax2DY(filename):
#[data_index, y=each stock, x=stock features, channel=1=each value]
_data = np.genfromtxt(filename, delimiter = ',')
_data_date = 0;
_X = [] #Stock information for each period. [P1[s0001,s0002,s0003,...s0015,s0101,s0102,...s0115,...s3001, ...,s3015], P2[], P3[]...]
_Y = [] #Price trend for next week for each peroid. [P1[-1, -1, 1,1,1,0,-1,...i30],P2[],P3[]...]
_x = []
_y = []
_Z = [] #store the value of percent_change_next_weeks_price
_z = []
_idx = 0
_max_idx = 0
_max_y = 0
#print('_data=', _data)
for i in range(1, len(_data)): # Range from 1 to ignore first heading row.
if(_data_date != _data[i][2]): #if the data is different date, create a new row for them.
_data_date = _data[i][2] #Get date information
if(len(_x) != 0) :
_y[_max_idx] = 1
_max_idx = 0
_max_y = 0
_idx = 0
_X.append(_x)
_Y.append(_y)
_Z.append(_z)
_x = []
else:
pass
_x.append(_data[i][:RECORD_NUMBER].reshape(RECORD_NUMBER, 1))
if(_data[i][-1] > 0 and _data[i][-1] > _max_y): # if stock price increase in next week and the percentage is higher than other stocks.
_max_y = _data[i][-1]
_max_idx = _idx
else: pass
_y = [0]
_z = [_data[i][-1]]
_idx += 1
else: #all stock in the same date/week
_x.append(_data[i][:RECORD_NUMBER].reshape(RECORD_NUMBER, 1))
if(_data[i][-1] > 0 and _data[i][-1] > _max_y): # if stock price increase in next week and the percentage is higher than other stocks.
_max_y = _data[i][-1]
_max_idx = _idx
else: pass
_y.extend([0])
_z.extend([_data[i][-1]])
_idx += 1
_y[_max_idx] = 1 #label for last week of data
_X.append(_x)
_Y.append(_y)
_Z.append(_z)
return np.array(_X), np.array(_Y), np.array(_Z)
def GetPercentChangeNW(index_iter, percent_change_list):
percentage_list = []
avg_percentage = 0.0
sum_percentage = 0.0
for i, idx in enumerate(index_iter):
percentage_list.append(percent_change_list[i][idx])
sum_percentage += percent_change_list[i][idx]
avg_percentage = sum_percentage/i
return percentage_list, avg_percentage, sum_percentage
MDX, MDY, MDZ = getInputData4DXMax2DY(FILE_NAME)
X, Y, Z = getInputDataMaxY(FILE_NAME)
print('length of X:%d, X[0]:%d'%(len(X), len(X[0])))
print('shape of MDX, MDY, MDZ', MDX.shape, MDY.shape, MDZ.shape)
# ### Segmenting data into training, test, and validation
# In[2]:
TOTAL_SIZE = len(X)
TESTDATA_SIZE = 13
VALIDATION_SIZE = 0
train_data = X[:TOTAL_SIZE-TESTDATA_SIZE-VALIDATION_SIZE]
train_labels = Y[:TOTAL_SIZE-TESTDATA_SIZE-VALIDATION_SIZE]
train_next_week_percent = Z[:TOTAL_SIZE-TESTDATA_SIZE-VALIDATION_SIZE]
validation_data = X[TOTAL_SIZE-TESTDATA_SIZE-VALIDATION_SIZE:TOTAL_SIZE-TESTDATA_SIZE]
validation_labels = Y[TOTAL_SIZE-TESTDATA_SIZE-VALIDATION_SIZE:TOTAL_SIZE-TESTDATA_SIZE]
validation_next_week_percent = Z[TOTAL_SIZE-TESTDATA_SIZE-VALIDATION_SIZE:TOTAL_SIZE-TESTDATA_SIZE]
test_data = X[TOTAL_SIZE-TESTDATA_SIZE:]
test_labels = Y[TOTAL_SIZE-TESTDATA_SIZE:]
test_next_week_percent = Z[TOTAL_SIZE-TESTDATA_SIZE:]
train_size = train_labels.shape[0]
test_size = test_labels.shape[0]
print('TOTAL_SIZE', TOTAL_SIZE)
print('Train size', train_size, 'training label shape', train_labels.shape)
print('Validation size', validation_data.shape)
print('Test size', test_size)
# print('train_data', train_data)
# print('train_labels', train_labels)
# print('validation_data', validation_data)
# print('validation_labels', validation_labels)
# ### Parameters for NN
# We use online training instead of batch training.
# The batch_size set to 1 to simulate online training.
# In[65]:
# Parameters
learning_rate = 0.01
training_epochs = 4000
batch_size = 2
display_step = 1000
# log_dir = 'c:\\tmp\\tensorflow'
# if tf.gfile.Exists(log_dir):
# tf.gfile.DeleteRecursively(log_dir)
# else:pass
# tf.gfile.MakeDirs(log_dir)
# Network Parameters
#n_random_seed = 4(*0.1, 0.15)
n_random_seed = 4
n_mean = 0
n_stddev = 1
n_hidden_1 = 400 # 1st layer number of features
n_hidden_2 = 200 # 2nd layer number of features
n_classes = STOCK_NUMBER # Stock classes (30 stocks)
n_input = RECORD_NUMBER * n_classes #Stock data input (attribute shape for 30 stocks: 15*30=450)
# tf Graph Input
##with tf.name_scope('input'):
x = tf.placeholder("float", [None, n_input], name='x-input')
y = tf.placeholder("float", [None, n_classes], name='y-input')
# ### Construct model
# In[66]:
# Create model
def multilayer_perceptron(x, weights, biases):
# Adding a name scope ensures logical grouping of the layers in the graph.
## with tf.name_scope('layer_1'):
# Hidden layer with tanh activation
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
#layer_1 = tf.nn.sigmoid(layer_1)
layer_1 = tf.nn.tanh(layer_1)
# Hidden layer with RELU activation
#layer_1 = tf.nn.relu(layer_1)
## with tf.name_scope('layer_2'):
# Hidden layer with tanh activation
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
#layer_2 = tf.nn.sigmoid(layer_1)
layer_2 = tf.nn.tanh(layer_2)
# Hidden layer with RELU activation
#layer_2 = tf.nn.relu(layer_2)
## with tf.name_scope('out_layer'):
# Output layer with tanh activation
out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
out_layer = tf.nn.tanh(out_layer)
#out_layer = tf.nn.sigmoid(out_layer)
# Output layer with linear activation
return out_layer
# Store layers weight & bias
##with tf.name_scope('weights'):
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1], mean=n_mean, stddev=n_stddev, seed=n_random_seed)),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], mean=n_mean, stddev=n_stddev, seed=n_random_seed)),
'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes], mean=n_mean, stddev=n_stddev, seed=n_random_seed))
}
##with tf.name_scope('biases'):
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1], mean=n_mean, stddev=n_stddev, seed=n_random_seed)),
'b2': tf.Variable(tf.random_normal([n_hidden_2], mean=n_mean, stddev=n_stddev, seed=n_random_seed)),
'out': tf.Variable(tf.random_normal([n_classes], mean=n_mean, stddev=n_stddev, seed=n_random_seed))
}
# Construct model
pred = multilayer_perceptron(x, weights, biases)
# Define loss and optimizer
##with tf.name_scope('cross_entropy'):
#diff = tf.nn.softmax_cross_entropy_with_logits(pred, y)
diff = tf.nn.sigmoid_cross_entropy_with_logits(logits=pred, labels=y)
## with tf.name_scope('total'):
cost = tf.reduce_mean(diff)
##tf.summary.scalar('cross_entropy/cost', cost)
#
##with tf.name_scope('train'):
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate, name='GradientDescent').minimize(cost)
#optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
sess = tf.InteractiveSession()
# Merge all the summaries and write them out to /tmp/mnist_logs (by default)
##merged = tf.summary.merge_all()
# train_writer = tf.train.SummaryWriter(log_dir + '/train', sess.graph)
# test_writer = tf.train.SummaryWriter(log_dir + '/test')
# Initializing the variables
if (tf.__version__ <= '0.11.0'):
# Initializing the variables for r.011
init = tf.initialize_all_variables()
else:
# Initializing the variables for r0.12
init = tf.global_variables_initializer()
# ### Tensorboard process
# In[67]:
# Launch the graph
#with tf.Session() as sess:
sess.run(init)
# Training cycle
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(train_size/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_x = np.reshape(train_data[i*batch_size:(i+1)*batch_size], (batch_size, n_input))
batch_y = np.reshape(train_labels[i*batch_size:(i+1)*batch_size], (batch_size, n_classes))
#print ('type(batch_x), shape', type(batch_x), batch_x.shape)
#print ('batch_x=', batch_x)
# Run optimization op (backprop) and cost op (to get loss value)
## run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
## run_metadata = tf.RunMetadata()
## summary, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y}, options=run_options, run_metadata=run_metadata)
summary, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y})
# Compute average loss
avg_cost += c / total_batch
## #train_writer.add_run_metadata(run_metadata, 'step%03d'%i)
## train_writer.add_summary(summary, i)
# Display logs per epoch step
if epoch % display_step == 0:
print ('Epoch:', '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost))
print ('Epoch:', '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost))
print ('Optimization Finished!')
print ('learning_rate :', learning_rate)
print ('training_epochs :', training_epochs)
print ('n_random_seed :', n_random_seed)
print ('n_mean :', n_mean)
print ('n_stddev :', n_stddev)
print ('n_hidden_1 :', n_hidden_1)
print ('n_hidden_2 :', n_hidden_2)
# Test model
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
# Calculate accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
##tf.summary.scalar('accuracy', accuracy)
result_raw = tf.cast(pred, "float")
result_stock_index = tf.argmax(result_raw, 1)
Y_label_index = tf.argmax(y, 1)
print ('==>Training Data Accuracy:', accuracy.eval({x: train_data, y: train_labels}))
#print ('Training Data Raw Result:', result_raw.eval({x: train_data}))
result_stock_index_list = result_stock_index.eval({x: train_data})
Y_label_index_list = Y_label_index.eval({y:train_labels})
print ('Training Data Max. Stock Index Predict Result:', result_stock_index_list)
print ('Training Y labels:', Y_label_index_list )
max_percentage_list, avg_max_p, sum_max_p = GetPercentChangeNW(result_stock_index_list, train_next_week_percent)
print ('Percentage Change next week by Predict', max_percentage_list)
print ('=>Average percentage Change next week by Predict is %f, (Sum of percentage: %f)'%( avg_max_p, sum_max_p))
max_percentage_list, avg_max_p, sum_max_p = GetPercentChangeNW(Y_label_index_list, train_next_week_percent)
print ('Percentage Change next week by label', max_percentage_list)
print ('Average percentage Change next week by label is %f, (Sum of percentage: %f)'%( avg_max_p, sum_max_p))
# Testing section
print ('==>Testing Data Accuracy:', accuracy.eval({x: test_data, y: test_labels}))
result_stock_index_list = result_stock_index.eval({x: test_data})
Y_label_index_list = Y_label_index.eval({y:test_labels})
print ('Testing Data Max. Stock Index Predict Result:', result_stock_index_list)
print ('Testing Y labels:', Y_label_index_list )
max_percentage_list, avg_max_p, sum_max_p = GetPercentChangeNW(result_stock_index_list, test_next_week_percent)
print ('Percentage Change next week by Predict', max_percentage_list)
print ('=>Average percentage Change next week by Predict is %f, (Sum of percentage: %f)'%( avg_max_p, sum_max_p))
max_percentage_list, avg_max_p, sum_max_p = GetPercentChangeNW(Y_label_index_list, test_next_week_percent)
print ('Percentage Change next week by label', max_percentage_list)
print ('Average percentage Change next week by label is %f, (Sum of percentage: %f)'%( avg_max_p, sum_max_p))
##test_writer.add_summary(summary, i)