-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathsklearn-Perceptron.py
112 lines (95 loc) · 2.81 KB
/
sklearn-Perceptron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
'''
Created on Oct 16, 2016
@author: Cheng-lin Li
'''
from __future__ import print_function
import numpy as np
import math
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.linear_model import Perceptron
def getInputData(filename):
_data = np.genfromtxt(filename, delimiter=',')
_X = _data[:, :3]
_Y = _data[:, 3]
return _X, _Y
def getInputData1(filename):
_data = np.genfromtxt(filename, delimiter=',')
_X = _data[:, :3]
_Y = _data[:, 4]
return _X, _Y
def plot(X, Y, W):
'''
Plot data into 3D space for showing classification.
Plot the 3D plane that segments the datas.
'''
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
_data_set = X
for i in range(len(_data_set)):
_x = _data_set[i][1]
_y = _data_set[i][2]
_z = _data_set[i][3]
if Y[i] == 1:
_c_p = ax.scatter(_x, _y, _z, c='c', marker='^')
else:
_r_p = ax.scatter(_x, _y, _z, c='r', marker='o')
ax.legend ([_c_p, _r_p], ['Label 1 data','Label -1 data'])
xx, yy = np.meshgrid(np.arange(-0.2, 1.2, 0.02), np.arange(-0.2, 1.2, 0.02))
zz = -(W[0] + W[1] * xx + W[2] * yy) / W[3]
ax.plot_surface(xx, yy, zz, color = 'b', alpha = 0.3) # Plot the segmentation plane
plt.show()
def plot_error(iterationTimes, errorNumber):
_x = iterationTimes
_y = errorNumber
plt.plot(_x, _y)
plt.xlabel('Iteration Times')
plt.ylabel('Error number')
plt.show()
# Waiting to implement
pass
if __name__ == '__main__':
"""
PLA
"""
X,Y = getInputData("classification.txt")
X = np.c_[np.ones(len(X)), np.array(X)] # Coordinates vector of points, which is added '1' at first column.
pla = Perceptron()
pla.n_iter = 200
info = pla.get_params()
print (info)
pla = pla.fit(X, Y)
score = pla.score(X, Y)
W = pla.coef_
print('score =', score)
print ('W=', W )
plot (X, Y, W[0])
"""
pocket PLA
"""
iterList = []
numList = []
best_score = 0
W = None
X,Y = getInputData1("classification.txt") #Get column 5 as Y
X = np.c_[np.ones(len(X)), np.array(X)] # Coordinates vector of points, which is added '1' at first column.
pla = Perceptron()
pla.n_iter = 1
pla.warm_start = True
info = pla.get_params()
print (info)
for i in range (0, 7000):
pla = pla.fit(X, Y)
score = pla.score(X, Y)
ErrorNum = (1-score) * 2000
iterList.append(i)
numList.append(ErrorNum)
if (best_score <= score or i == 0):
best_score = score
W = pla.coef_
print('score =', best_score)
print ('W=', W )
plot_error (iterList, numList)