-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathworker.py
676 lines (567 loc) · 24.7 KB
/
worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
from __future__ import absolute_import
import os
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'vilbert_multitask.settings')
import django
django.setup()
from django.conf import settings
from demo.utils import log_to_terminal
from demo.models import QuestionAnswer, Tasks
import demo.constants as constants
import pika
import time
import yaml
import json
import traceback
import signal
import requests
import atexit
django.db.close_old_connections()
import sys
import os
import torch
import yaml
import cv2
import argparse
import glob
import pdb
import numpy as np
import PIL
import _pickle as cPickle
import time
import traceback
import uuid
from PIL import Image
from easydict import EasyDict as edict
from pytorch_transformers.tokenization_bert import BertTokenizer
from vilbert.datasets import ConceptCapLoaderTrain, ConceptCapLoaderVal
from vilbert.vilbert import VILBertForVLTasks, BertConfig, BertForMultiModalPreTraining
from vilbert.task_utils import LoadDatasetEval
import matplotlib.pyplot as plt
from maskrcnn_benchmark.config import cfg
from maskrcnn_benchmark.layers import nms
from maskrcnn_benchmark.modeling.detector import build_detection_model
from maskrcnn_benchmark.structures.image_list import to_image_list
from maskrcnn_benchmark.utils.model_serialization import load_state_dict
from types import SimpleNamespace
class FeatureExtractor:
MAX_SIZE = 1333
MIN_SIZE = 800
def __init__(self):
self.args = self.get_parser()
self.detection_model = self._build_detection_model()
def get_parser(self):
parser = SimpleNamespace(model_file= 'save/resnext_models/model_final.pth',
config_file='save/resnext_models/e2e_faster_rcnn_X-152-32x8d-FPN_1x_MLP_2048_FPN_512_train.yaml',
batch_size=1,
num_features=100,
feature_name="fc6",
confidence_threshold=0,
background=False,
partition=0)
return parser
def _build_detection_model(self):
cfg.merge_from_file(self.args.config_file)
cfg.freeze()
model = build_detection_model(cfg)
checkpoint = torch.load(self.args.model_file, map_location=torch.device("cpu"))
load_state_dict(model, checkpoint.pop("model"))
model.to("cuda")
model.eval()
return model
def _image_transform(self, path):
img = Image.open(path)
im = np.array(img).astype(np.float32)
# IndexError: too many indices for array, grayscale images
if len(im.shape) < 3:
im = np.repeat(im[:, :, np.newaxis], 3, axis=2)
im = im[:,:,:3]
im = im[:, :, ::-1]
im -= np.array([102.9801, 115.9465, 122.7717])
im_shape = im.shape
im_height = im_shape[0]
im_width = im_shape[1]
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
# Scale based on minimum size
im_scale = self.MIN_SIZE / im_size_min
# Prevent the biggest axis from being more than max_size
# If bigger, scale it down
if np.round(im_scale * im_size_max) > self.MAX_SIZE:
im_scale = self.MAX_SIZE / im_size_max
im = cv2.resize(
im, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR
)
img = torch.from_numpy(im).permute(2, 0, 1)
im_info = {"width": im_width, "height": im_height}
return img, im_scale, im_info
def _process_feature_extraction(
self, output, im_scales, im_infos, feature_name="fc6", conf_thresh=0
):
batch_size = len(output[0]["proposals"])
n_boxes_per_image = [len(boxes) for boxes in output[0]["proposals"]]
score_list = output[0]["scores"].split(n_boxes_per_image)
score_list = [torch.nn.functional.softmax(x, -1) for x in score_list]
feats = output[0][feature_name].split(n_boxes_per_image)
cur_device = score_list[0].device
feat_list = []
info_list = []
for i in range(batch_size):
dets = output[0]["proposals"][i].bbox / im_scales[i]
scores = score_list[i]
max_conf = torch.zeros((scores.shape[0])).to(cur_device)
conf_thresh_tensor = torch.full_like(max_conf, conf_thresh)
start_index = 1
# Column 0 of the scores matrix is for the background class
if self.args.background:
start_index = 0
for cls_ind in range(start_index, scores.shape[1]):
cls_scores = scores[:, cls_ind]
keep = nms(dets, cls_scores, 0.5)
max_conf[keep] = torch.where(
# Better than max one till now and minimally greater than conf_thresh
(cls_scores[keep] > max_conf[keep])
& (cls_scores[keep] > conf_thresh_tensor[keep]),
cls_scores[keep],
max_conf[keep],
)
sorted_scores, sorted_indices = torch.sort(max_conf, descending=True)
num_boxes = (sorted_scores[: self.args.num_features] != 0).sum()
keep_boxes = sorted_indices[: self.args.num_features]
feat_list.append(feats[i][keep_boxes])
bbox = output[0]["proposals"][i][keep_boxes].bbox / im_scales[i]
# Predict the class label using the scores
objects = torch.argmax(scores[keep_boxes][start_index:], dim=1)
cls_prob = torch.max(scores[keep_boxes][start_index:], dim=1)
info_list.append(
{
"bbox": bbox.cpu().numpy(),
"num_boxes": num_boxes.item(),
"objects": objects.cpu().numpy(),
"image_width": im_infos[i]["width"],
"image_height": im_infos[i]["height"],
"cls_prob": scores[keep_boxes].cpu().numpy(),
}
)
return feat_list, info_list
def get_detectron_features(self, image_paths):
img_tensor, im_scales, im_infos = [], [], []
for image_path in image_paths:
im, im_scale, im_info = self._image_transform(image_path)
img_tensor.append(im)
im_scales.append(im_scale)
im_infos.append(im_info)
# Image dimensions should be divisible by 32, to allow convolutions
# in detector to work
current_img_list = to_image_list(img_tensor, size_divisible=32)
current_img_list = current_img_list.to("cuda")
with torch.no_grad():
output = self.detection_model(current_img_list)
feat_list = self._process_feature_extraction(
output,
im_scales,
im_infos,
self.args.feature_name,
self.args.confidence_threshold,
)
return feat_list
def _chunks(self, array, chunk_size):
for i in range(0, len(array), chunk_size):
yield array[i : i + chunk_size]
def _save_feature(self, file_name, feature, info):
file_base_name = os.path.basename(file_name)
file_base_name = file_base_name.split(".")[0]
info["image_id"] = file_base_name
info["features"] = feature.cpu().numpy()
file_base_name = file_base_name + ".npy"
np.save(os.path.join(self.args.output_folder, file_base_name), info)
def extract_features(self, image_path):
with torch.no_grad():
features, infos = self.get_detectron_features(image_path)
return features, infos
def tokenize_batch(batch):
return [tokenizer.convert_tokens_to_ids(sent) for sent in batch]
def untokenize_batch(batch):
return [tokenizer.convert_ids_to_tokens(sent) for sent in batch]
def detokenize(sent):
""" Roughly detokenizes (mainly undoes wordpiece) """
new_sent = []
for i, tok in enumerate(sent):
if tok.startswith("##"):
new_sent[len(new_sent) - 1] = new_sent[len(new_sent) - 1] + tok[2:]
else:
new_sent.append(tok)
return new_sent
def printer(sent, should_detokenize=True):
if should_detokenize:
sent = detokenize(sent)[1:-1]
print(" ".join(sent))
def prediction(question, features, spatials, segment_ids, input_mask, image_mask, co_attention_mask, task_tokens, task_id, infos):
if task_id == "7":
N = len(infos) # define top N results need to return.
else:
N = 3
# check the number of image is correct:
if task_id in ["1", "15", "13", "11", "4", "16"]:
assert len(infos) == 1, "task require 1 image"
elif task_id in ["12"]:
assert len(infos) == 2, "task require 2 images"
elif task_id in ["7"]:
assert len(infos) > 1 and len(infos) <= 10, "task require 2-10 images"
else:
raise ValueError('task not valid.')
if task_id == "12":
batch_size = 1
max_num_bbox = features.size(1)
num_options = question.size(1)
question = question.repeat(2, 1)
# question = question.view(batch_size * 2, int(question.size(1) / 2))
input_mask = input_mask.repeat(2, 1)
# input_mask = input_mask.view(batch_size * 2, int(input_mask.size(1) / 2))
segment_ids = segment_ids.repeat(2, 1)
# segment_ids = segment_ids.view(batch_size * 2, int(segment_ids.size(1) / 2))
task_tokens = task_tokens.repeat(2, 1)
if task_id == "7":
num_image = features.size(0)
max_num_bbox = features.size(1)
question = question.repeat(num_image, 1)
input_mask = input_mask.repeat(num_image, 1)
segment_ids = segment_ids.repeat(num_image, 1)
task_tokens = task_tokens.repeat(num_image, 1)
with torch.no_grad():
vil_prediction, vil_prediction_gqa, vil_logit, vil_binary_prediction, vil_tri_prediction, vision_prediction, vision_logit, linguisic_prediction, linguisic_logit, attn_data_list = model(
question, features, spatials, segment_ids, input_mask, image_mask, co_attention_mask, task_tokens, output_all_attention_masks=True
)
# logits = torch.max(vil_prediction, 1)[1].data # argmax
# pdb.set_trace()
# Load VQA label to answers:
if task_id == "1" or task_id == "2":
prob = torch.softmax(vil_prediction.view(-1), dim=0)
prob_val, prob_idx = torch.sort(prob, 0, True)
label2ans_path = os.path.join('save', "VQA" ,"cache", "trainval_label2ans.pkl")
vqa_label2ans = cPickle.load(open(label2ans_path, "rb"))
answer = [vqa_label2ans[prob_idx[i].item()] for i in range(N)]
confidence = [prob_val[i].item() for i in range(N)]
output = {
"top3_answer": answer,
"top3_confidence": confidence
}
return output
# Load GQA label to answers:
if task_id == "15":
label2ans_path = os.path.join('save', "gqa" ,"cache", "trainval_label2ans.pkl")
prob_gqa = torch.softmax(vil_prediction_gqa.view(-1), dim=0)
prob_val, prob_idx = torch.sort(prob_gqa, 0, True)
gqa_label2ans = cPickle.load(open(label2ans_path, "rb"))
answer = [gqa_label2ans[prob_idx[i].item()] for i in range(N)]
confidence = [prob_val[i].item() for i in range(N)]
output = {
"top3_answer": answer,
"top3_confidence": confidence
}
return output
# vil_binary_prediction NLVR2, 0: False 1: True Task 12
if task_id == "12":
label_map = {0:"False", 1:"True"}
prob_binary = torch.softmax(vil_binary_prediction.view(-1), dim=0)
prob_val, prob_idx = torch.sort(prob_binary, 0, True)
answer = [label_map[prob_idx[i].item()] for i in range(2)]
confidence = [prob_val[i].item() for i in range(2)]
output = {
"top3_answer": answer,
"top3_confidence": confidence
}
return output
# vil_entaliment:
if task_id == "13":
label_map = {0:"contradiction (false)", 1:"neutral", 2:"entailment (true)"}
# logtis_tri = torch.max(vil_tri_prediction, 1)[1].data
prob_tri = torch.softmax(vil_tri_prediction.view(-1), dim=0)
prob_val, prob_idx = torch.sort(prob_tri, 0, True)
answer = [label_map[prob_idx[i].item()] for i in range(3)]
confidence = [prob_val[i].item() for i in range(3)]
output = {
"top3_answer": answer,
"top3_confidence": confidence
}
return output
# vil_logit:
# For image retrieval
if task_id == "7":
sort_val, sort_idx = torch.sort(torch.softmax(vil_logit.view(-1), dim=0), 0, True)
idx = [sort_idx[i].item() for i in range(N)]
confidence = [sort_val[i].item() for i in range(N)]
output = {
"top3_answer": idx,
"top3_confidence": confidence
}
return output
# grounding:
# For refer expressions -
if task_id == "11" or task_id == "4" or task_id == "16":
image_w = infos[0]['image_width']
image_h = infos[0]['image_height']
prob = torch.softmax(vision_logit.view(-1), dim=0)
grounding_val, grounding_idx = torch.sort(prob, 0, True)
out = []
for i in range(N):
idx = grounding_idx[i]
val = grounding_val[i]
box = spatials[0][idx][:4].tolist()
y1 = int(box[1] * image_h)
y2 = int(box[3] * image_h)
x1 = int(box[0] * image_w)
x2 = int(box[2] * image_w)
out.append({"y1":y1, "y2":y2, "x1":x1, "x2":x2, 'confidence':val.item()*100})
return out
def custom_prediction(query, task, features, infos, task_id):
# if task is Guesswhat:
if task_id in ["16"]:
tokens_list = []
dialogs = query.split("q:")[1:]
for dialog in dialogs:
QA_pair = dialog.split("a:")
tokens_list.append("start " + QA_pair[0] + " answer " + QA_pair[1] + " stop ")
tokens = ''
for token in tokens_list:
tokens = tokens + token
tokens = tokenizer.encode(query)
tokens = tokenizer.add_special_tokens_single_sentence(tokens)
segment_ids = [0] * len(tokens)
input_mask = [1] * len(tokens)
max_length = 37
if len(tokens) < max_length:
# Note here we pad in front of the sentence
padding = [0] * (max_length - len(tokens))
tokens = tokens + padding
input_mask += padding
segment_ids += padding
text = torch.from_numpy(np.array(tokens)).cuda().unsqueeze(0)
input_mask = torch.from_numpy(np.array(input_mask)).cuda().unsqueeze(0)
segment_ids = torch.from_numpy(np.array(segment_ids)).cuda().unsqueeze(0)
task = torch.from_numpy(np.array(task)).cuda().unsqueeze(0)
num_image = len(infos)
feature_list = []
image_location_list = []
image_mask_list = []
for i in range(num_image):
image_w = infos[i]['image_width']
image_h = infos[i]['image_height']
feature = features[i]
num_boxes = feature.shape[0]
g_feat = torch.sum(feature, dim=0) / num_boxes
num_boxes = num_boxes + 1
feature = torch.cat([g_feat.view(1,-1), feature], dim=0)
boxes = infos[i]['bbox']
image_location = np.zeros((boxes.shape[0], 5), dtype=np.float32)
image_location[:,:4] = boxes
image_location[:,4] = (image_location[:,3] - image_location[:,1]) * (image_location[:,2] - image_location[:,0]) / (float(image_w) * float(image_h))
image_location[:,0] = image_location[:,0] / float(image_w)
image_location[:,1] = image_location[:,1] / float(image_h)
image_location[:,2] = image_location[:,2] / float(image_w)
image_location[:,3] = image_location[:,3] / float(image_h)
g_location = np.array([0,0,1,1,1])
image_location = np.concatenate([np.expand_dims(g_location, axis=0), image_location], axis=0)
image_mask = [1] * (int(num_boxes))
feature_list.append(feature)
image_location_list.append(torch.tensor(image_location))
image_mask_list.append(torch.tensor(image_mask))
features = torch.stack(feature_list, dim=0).float().cuda()
spatials = torch.stack(image_location_list, dim=0).float().cuda()
image_mask = torch.stack(image_mask_list, dim=0).byte().cuda()
co_attention_mask = torch.zeros((num_image, num_boxes, max_length)).cuda()
answer = prediction(text, features, spatials, segment_ids, input_mask, image_mask, co_attention_mask, task, task_id, infos)
return answer
# =============================
# ViLBERT Model Loading Part
# =============================
def load_vilbert_model():
global feature_extractor
global tokenizer
global model
feature_extractor = FeatureExtractor()
args = SimpleNamespace(from_pretrained= "save/multitask_model/pytorch_model_9.bin",
bert_model="bert-base-uncased",
config_file="config/bert_base_6layer_6conect.json",
max_seq_length=101,
train_batch_size=1,
do_lower_case=True,
predict_feature=False,
seed=42,
num_workers=0,
baseline=False,
img_weight=1,
distributed=False,
objective=1,
visual_target=0,
dynamic_attention=False,
task_specific_tokens=True,
tasks='1',
save_name='',
in_memory=False,
batch_size=1,
local_rank=-1,
split='mteval',
clean_train_sets=True
)
config = BertConfig.from_json_file(args.config_file)
with open('./vilbert_tasks.yml', 'r') as f:
task_cfg = edict(yaml.safe_load(f))
task_names = []
for i, task_id in enumerate(args.tasks.split('-')):
task = 'TASK' + task_id
name = task_cfg[task]['name']
task_names.append(name)
timeStamp = args.from_pretrained.split('/')[-1] + '-' + args.save_name
config = BertConfig.from_json_file(args.config_file)
default_gpu=True
if args.predict_feature:
config.v_target_size = 2048
config.predict_feature = True
else:
config.v_target_size = 1601
config.predict_feature = False
if args.task_specific_tokens:
config.task_specific_tokens = True
if args.dynamic_attention:
config.dynamic_attention = True
config.visualization = True
num_labels = 3129
if args.baseline:
model = BaseBertForVLTasks.from_pretrained(
args.from_pretrained, config=config, num_labels=num_labels, default_gpu=default_gpu
)
else:
model = VILBertForVLTasks.from_pretrained(
args.from_pretrained, config=config, num_labels=num_labels, default_gpu=default_gpu
)
model.eval()
cuda = torch.cuda.is_available()
if cuda: model = model.cuda(0)
tokenizer = BertTokenizer.from_pretrained(
args.bert_model, do_lower_case=args.do_lower_case
)
def callback(ch, method, properties, body):
print("I'm callback")
start = time.time()
body = yaml.safe_load(body) # using yaml instead of json.loads since that unicodes the string in value
print(" [x] Received %r" % body)
try:
task = Tasks.objects.get(unique_id=int(body["task_id"]))
question_obj = QuestionAnswer.objects.create(task=task,
input_text=body['question'],
input_images=body['image_path'],
socket_id=body['socket_id'])
print("created question answer object")
except:
print(str(traceback.print_exc()))
try:
image_path = body["image_path"]
features, infos = feature_extractor.extract_features(image_path)
query = body["question"]
socket_id = body["socket_id"]
task_id = body["task_id"]
task = [eval(task_id)]
answer = custom_prediction(query, task, features, infos, task_id)
if (task_id == "1" or task_id == "15" or task_id == "2" or task_id == "13"):
top3_answer = answer["top3_answer"]
top3_confidence = answer["top3_confidence"]
top3_list = []
for i in range(3):
temp = {}
temp["answer"] = top3_answer[i]
temp["confidence"] = round(top3_confidence[i]*100, 2)
top3_list.append(temp)
result = {
"task_id": task_id,
"result": top3_list
}
print("The task result is", result)
question_obj.answer_text = result
question_obj.save()
if (task_id == "4" or task_id == "16" or task_id == "11"):
print("The answer is", answer)
image_name_with_bounding_boxes = uuid.uuid4()
image = image_path[0].split("/")
abs_path = ""
for i in range(len(image)-3):
abs_path += image[i]
abs_path += "/"
color_list = [(0,0,255),(0,255,0),(255,0,0)]
image_name_list = []
confidence_list = []
for i, j in zip(answer, color_list):
image_obj = cv2.imread(image_path[0])
image_name = uuid.uuid4()
image_with_bounding_boxes = cv2.rectangle(image_obj, (i["x1"], i["y1"]), (i["x2"], i["y2"]), j, 4)
image_name_list.append(str(image_name))
confidence_list.append(round(i["confidence"], 2))
cv2.imwrite(os.path.join(abs_path, "media", "refer_expressions_task", str(image_name)+ ".jpg"), image_with_bounding_boxes)
result = {
"task_id": task_id,
"image_name_list": image_name_list,
"confidence_list": confidence_list
}
question_obj.answer_images = result
question_obj.save()
if (task_id == "12"):
print(answer)
top3_answer = answer["top3_answer"]
top3_confidence = answer["top3_confidence"]
top3_list = []
for i in range(2):
temp = {}
temp["answer"] = top3_answer[i]
temp["confidence"] = round(top3_confidence[i]*100, 2)
top3_list.append(temp)
result = {
"task_id": task_id,
"result": top3_list
}
question_obj.answer_text = result
question_obj.save()
if (task_id == "7"):
top3_answer = answer["top3_answer"]
top3_confidence = answer["top3_confidence"]
image_name_list = []
confidence_list = []
for i in range(len(top3_answer)):
print(image_path[top3_answer[i]])
if "demo" in image_path[0].split("/"):
image_name_list.append("demo/" + os.path.split(image_path[top3_answer[i]])[1].split(".")[0] + "." + str(image_path[0].split("/")[-1].split(".")[1]))
else:
image_name_list.append("test2014/" + os.path.split(image_path[top3_answer[i]])[1].split(".")[0] + "." + str(image_path[0].split("/")[-1].split(".")[1]))
confidence_list.append(round(top3_confidence[i]*100, 2))
result = {
"task_id": task_id,
"image_name_list": image_name_list,
"confidence_list": confidence_list
}
print("The result is", result)
question_obj.answer_images = result
question_obj.save()
log_to_terminal(body['socket_id'], {"terminal": json.dumps(result)})
log_to_terminal(body['socket_id'], {"result": json.dumps(result)})
log_to_terminal(body['socket_id'], {"terminal": "Completed Task"})
ch.basic_ack(delivery_tag=method.delivery_tag)
print("Message Deleted")
django.db.close_old_connections()
except Exception as e:
print(traceback.print_exc())
print(str(e))
end = time.time()
print("Time taken is", end - start)
def main():
# Load correponding Vilbert model into global instance
load_vilbert_model()
connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost',
port=5672,
socket_timeout=10000))
channel = connection.channel()
channel.queue_declare(queue='vilbert_multitask_queue', durable=True)
print('[*] Waiting for messages. To exit press CTRL+C')
# Listen to interface
channel.basic_consume('vilbert_multitask_queue', callback)
channel.start_consuming()
if __name__ == "__main__":
main()