-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdataloading.py
113 lines (95 loc) · 3.57 KB
/
dataloading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import tensorflow as tf
import glob
import matplotlib.pyplot as plt
from PIL import Image
import os
import random
import numpy as np
def preprocess_image(image):
image = tf.image.decode_jpeg(image, channels=3)
image = tf.cast(image, dtype=tf.float32)
image = image / 255.
return image
def load_and_preprocess_image(path):
image = tf.io.read_file(path)
return preprocess_image(image)
def chunks(l, n):
"""Yield successive n-sized chunks from l."""
for i in range(0, len(l), n):
elem = l[i:i + n]
random.shuffle(elem)
yield elem
def load_train_human3m(arg, path='../datasets/human3/train/'):
"""
creates tf.dataset from the human3m video dataset with the following folder structure on disk:
human3
train
S1
directions <- first video
0.jpg
1.jpg
2.jpg
...
discussion <- second video
0.jpg
1.jpg
2.jpg
...
...
S5
directions
0.jpg
1.jpg
2.jpg
...
discussion
0.jpg
1.jpg
2.jpg
...
...
...
:param path:
:return:
"""
vids = [f for f in glob.glob(path + "*/*", recursive=True)]
frames = []
for vid in vids:
for chunk in chunks(sorted(glob.glob(vid + "/*.jpg", recursive=True),
key=lambda x: int(x.split('/')[-1].split('.jpg')[0])), arg.chunk_size):
if len(chunk) == arg.chunk_size:
random.shuffle(chunk)
frames.append(chunk)
random.shuffle(frames)
frames = np.asarray(frames)
raw_dataset = tf.data.Dataset.from_tensor_slices(frames)\
.interleave(lambda x: tf.data.Dataset.from_tensor_slices(x)
.shuffle(arg.n_shuffle, reshuffle_each_iteration=True), cycle_length=arg.chunk_size, block_length=2)
return raw_dataset
def load_test_human3m(arg, path='../datasets/human3/test/'):
chunk_size = 2
vids = [f for f in glob.glob(path + "*/*", recursive=True)]
frames = []
for vid in vids:
for chunk in chunks(
sorted(glob.glob(vid + "/*.jpg", recursive=True), key=lambda x: int(x.split('/')[-1].split('.jpg')[0])),
chunk_size):
if len(chunk) == 2:
frames.append(chunk)
frames = np.asarray(frames)
raw_dataset = tf.data.Dataset.from_tensor_slices(frames).flat_map(lambda x: tf.data.Dataset.from_tensor_slices(x))
return raw_dataset
def load_train_generic(arg, '../datasets/generic/train_images/'):
frames = glob.glob(path + "*.jpg", recursive=True)
frames = np.asarray(frames).reshape(-1, 1)
raw_dataset = tf.data.Dataset.from_tensor_slices(frames)\
.flat_map(lambda x: tf.data.Dataset.from_tensor_slices(x)).shuffle(arg.n_shuffle, reshuffle_each_iteration=True)
return raw_dataset
def load_test_generic(arg, path='../datasets/generic/test_images/'):
frames = glob.glob(path + "*.jpg", recursive=True)
frames = np.asarray(frames).reshape(-1, 1)
raw_dataset = tf.data.Dataset.from_tensor_slices(frames)\
.flat_map(lambda x: tf.data.Dataset.from_tensor_slices(x))
return raw_dataset
dataset_map_train = {'generic': load_train_generic, 'human3m': load_train_human3m}
dataset_map_test = {'generic': load_test_generic, 'human3m': load_test_human3m}