-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodels.py
130 lines (104 loc) · 4.95 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
import torch.nn.functional as F
import time
from torch.nn import Parameter, Linear
from torch.nn.init import xavier_uniform_
from torch_geometric.nn import GCNConv
from utils import convert_edge2adj, normalize
def get_model(model_name):
return eval(model_name)
class MatrixGCN(torch.nn.Module):
def __init__(self, args, data):
super(MatrixGCN, self).__init__()
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# self.mat = normalize(convert_edge2adj(data.edge_index, data.num_nodes) + torch.eye(data.num_nodes)).to(device)
start = time.time()
self.mat = Parameter(normalize(convert_edge2adj(data.edge_index, data.num_nodes) + torch.eye(data.num_nodes)), requires_grad=False)
self.linear1 = Parameter(torch.Tensor(args.num_features, args.hid_dim))
self.linear2 = Parameter(torch.Tensor(args.hid_dim, args.num_classes))
xavier_uniform_(self.linear1)
xavier_uniform_(self.linear2)
self.args = args
print('MatrixGCN init time cost: {}'.format(time.time() - start))
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = self.mat.matmul(x.matmul(self.linear1))
hid_x = F.relu(x)
drop_x = F.dropout(hid_x, self.args.dropout, training=self.training)
bef_linear2 = self.mat.matmul(drop_x)
fin_x = bef_linear2.matmul(self.linear2)
if self.args.multilabel:
out = fin_x # without sigmoid
else:
out = F.log_softmax(fin_x, dim=1)
return (hid_x, bef_linear2, fin_x), out
class MatrixGCN_layer3(torch.nn.Module):
def __init__(self, args, data):
super(MatrixGCN_layer3, self).__init__()
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# self.mat = normalize(convert_edge2adj(data.edge_index, data.num_nodes) + torch.eye(data.num_nodes)).to(device)
start = time.time()
self.mat = Parameter(normalize(convert_edge2adj(data.edge_index, data.num_nodes) + torch.eye(data.num_nodes)), requires_grad=False)
self.linear1 = Parameter(torch.Tensor(args.num_features, args.hid_dim))
self.linear2 = Parameter(torch.Tensor(args.hid_dim, args.hid_dim))
self.linear3 = Parameter(torch.Tensor(args.hid_dim, args.num_classes))
xavier_uniform_(self.linear1)
xavier_uniform_(self.linear2)
xavier_uniform_(self.linear3)
self.args = args
print('MatrixGCN init time cost: {}'.format(time.time() - start))
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = self.mat.matmul(x.matmul(self.linear1))
hid_x = F.relu(x)
drop_x = F.dropout(hid_x, self.args.dropout, training=self.training)
bef_linear2 = self.mat.matmul(drop_x)
af_linear2 = bef_linear2.matmul(self.linear2)
af_linear2 = F.relu(x)
af_linear2 = F.dropout(af_linear2, self.args.dropout, training=self.training)
bf_linear3 = self.mat.matmul(af_linear2)
fin_x = bf_linear3.matmul(self.linear3)
if self.args.multilabel:
out = fin_x # without sigmoid
else:
out = F.log_softmax(fin_x, dim=1)
return (hid_x, bf_linear3, fin_x), out
# Network definition, could be refactored
class GCN(torch.nn.Module):
def __init__(self, args, data):
super(GCN, self).__init__()
self.conv1 = GCNConv(args.num_features, args.hid_dim)
self.conv2 = GCNConv(args.hid_dim, args.num_classes)
self.args = args
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = self.conv1(x, edge_index)
hid_x = F.relu(x)
x = F.dropout(hid_x, self.args.dropout, training=self.training)
x = self.conv2(x, edge_index)
if self.args.multilabel:
out = x # without sigmoid
else:
out = F.log_softmax(x, dim=1)
# TODO: the final element in the triple is added for compatability
return (hid_x, x, x), out
class SGC(torch.nn.Module):
def __init__(self, args, data):
super(SGC, self).__init__()
self.mat = Parameter(normalize(convert_edge2adj(data.edge_index, data.num_nodes) + torch.eye(data.num_nodes)), requires_grad=False)
self.linear1 = Parameter(torch.Tensor(args.num_features, args.hid_dim))
self.linear2 = Parameter(torch.Tensor(args.hid_dim, args.num_classes))
xavier_uniform_(self.linear1)
xavier_uniform_(self.linear2)
self.args = args
def forward(self, data):
x, edge_index = data.x, data.edge_index
hid_x = self.mat.matmul(x.matmul(self.linear1))
drop_x = F.dropout(hid_x, self.args.dropout, training=self.training)
bef_linear2 = self.mat.matmul(drop_x)
fin_x = bef_linear2.matmul(self.linear2)
if self.args.multilabel:
out = fin_x # without sigmoid
else:
out = F.log_softmax(fin_x, dim=1)
return (hid_x, bef_linear2, fin_x), out