-
Notifications
You must be signed in to change notification settings - Fork 18
/
onnx_to_trt_multibatch.py
56 lines (46 loc) · 2.16 KB
/
onnx_to_trt_multibatch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from __future__ import print_function
import torch
import numpy as np
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
import sys, os
sys.path.insert(1, os.path.join(sys.path[0], ".."))
import common
TRT_LOGGER = trt.Logger()
def get_engine(onnx_file_path, engine_file_path=""):
"""Attempts to load a serialized engine if available, otherwise builds a new TensorRT engine and saves it."""
def build_engine():
"""Takes an ONNX file and creates a TensorRT engine to run inference with"""
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
builder.fp16_mode = True
builder.strict_type_constraints = True
builder.max_workspace_size = 1 << 30 # 1GB
builder.max_batch_size = 4
# Parse model file
if not os.path.exists(onnx_file_path):
print('ONNX file {} not found, please run yolov3_to_onnx.py first to generate it.'.format(onnx_file_path))
exit(0)
print('Loading ONNX file from path {}...'.format(onnx_file_path))
with open(onnx_file_path, 'rb') as model:
print('Beginning ONNX file parsing')
parser.parse(model.read())
print('Completed parsing of ONNX file')
print('Building an engine from file {}; this may take a while...'.format(onnx_file_path))
engine = builder.build_cuda_engine(network)
print("Completed creating Engine")
with open(engine_file_path, "wb") as f:
f.write(engine.serialize())
# return engine
if os.path.exists(engine_file_path):
print("Please delete yolov3-608.trt firstly, otherwise you can not get a new file")
else:
build_engine()
def main():
"""Create a TensorRT engine for ONNX-based YOLOv3-608 and run inference."""
# Try to load a previously generated YOLOv3-608 network graph in ONNX format:
onnx_file_path = 'yolov3-608.onnx'
engine_file_path = "yolov3-608.trt"
get_engine(onnx_file_path, engine_file_path)
if __name__ == '__main__':
main()