-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_gaussian_experiment.py
91 lines (77 loc) · 3.2 KB
/
run_gaussian_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import argparse
import os
import numpy as np
import pandas as pd
import warnings
from algorithms import THLassoBandit
from collections import defaultdict
from envs.gaussian import Gaussian
warnings.filterwarnings(action='ignore')
def run_exp(num_trial, K, T, d, s0, x_max, rho_sq, alg):
trajectory = defaultdict(list)
for n in range(num_trial):
print('==== Run trial {} ===='.format(n))
rng = np.random.RandomState(np.random.randint(0, 2 ** 32))
alg_ins = alg[0](rng, **alg[1])
cum_reward = 0
cum_regret = 0
log = defaultdict(list)
# run each trial
env = Gaussian(K, d, s0, x_max, rho_sq, rng)
for t in range(T):
if t % 100 == 0:
print('trial: {}, round: {}, regret: {}'.format(n, t, cum_regret))
# receive context set
x = env.context()
# pull arm and observe reward
action = alg_ins.choose_action(x, t + 1)
reward, regret = env.pull(action)
# update policy
alg_ins.update_beta(reward, t + 1)
# record log
cum_reward += reward
cum_regret += regret
log['rewards'].append(cum_reward)
log['regrets'].append(cum_regret)
log['false_negative'].append(env.false_negative(alg_ins.beta))
log['false_positive'].append(env.false_positive(alg_ins.beta))
log['error_l1'].append(env.error_l1(alg_ins.beta))
log['error_l2'].append(env.error_l2(alg_ins.beta))
for k, v in log.items():
trajectory[k].append(v)
return trajectory
def main():
parser = argparse.ArgumentParser(description='Main script for experiments with a Gaussian distribution')
parser.add_argument('--K', type=int, default=2, help='number of arms')
parser.add_argument('--T', type=int, default=1000, help='number of rounds')
parser.add_argument('--d', type=int, default=1000,
help='dimension of feature vectors')
parser.add_argument('--s0', type=int, default=20, help='sparsity index')
parser.add_argument('--x_max', type=int, default=10,
help='maximum l2-norm of feature vectors')
parser.add_argument('--rho_sq', type=float, default=0.7,
help='correlation level between feature vectors of arms')
parser.add_argument('--num_trial', type=int, default=20,
help='number of trials to run experiments.')
args = parser.parse_args()
K = args.K
T = args.T
d = args.d
s0 = args.s0
x_max = args.x_max
rho_sq = args.rho_sq
# define algorithm
alg = (THLassoBandit, {'K': K, 'd': d, 'lam0': 0.02})
# run experiments
print('===== Run experiments over {} trials ====='.format(args.num_trial))
trajectory = run_exp(args.num_trial, K, T, d, s0, x_max, rho_sq, alg)
# save log
save_path = 'log/gaussian/K{}_d{}_s{}_xm{}_rho{}/'.format(K, d, s0, x_max, rho_sq)
if not os.path.isdir(save_path):
os.makedirs(save_path)
for k, v in trajectory.items():
df = pd.DataFrame(np.array(v).T)
df.index.name = '#index'
df.to_csv(save_path + k + '.csv')
if __name__ == '__main__':
main()