-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdeconv3l.py
101 lines (77 loc) · 3.46 KB
/
deconv3l.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import glob
import json
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from mpi4py import MPI
## MPI Parameters
comm = MPI.COMM_WORLD
my_rank = comm.Get_rank()
p = comm.Get_size()
res = [72, 72]
output_shape = [72, 72]
len_label = np.prod(res)
input_shape = [36, 36, 143]
len_feature = np.prod(input_shape)
## Hyperparameters
batch_size = 20
epochs = 24
shuffle_buffer = 1000
learning_rate = 0.001
## Mapping function for TFrecords
def map_fn_rain_ammount(serialized_example):
feature_description = {
'feature': tf.io.FixedLenFeature([len_feature, ], tf.float32),
'label': tf.io.FixedLenFeature([len_label, ], tf.float32)
}
example = tf.io.parse_single_example(serialized_example, feature_description)
feature = example['feature']
label = example['label']
feature = tf.reshape(example['feature'], input_shape)
label = tf.reshape(example['label'], res)
return (feature, label)
## Master process
if my_rank == p-1:
for i in range(p-1):
cond = comm.recv(source=i, tag=123)
print(i, 'sends', cond)
else:
## Create datasets
data_path = '/p/scratch/deepacf/deeprain/rojascampos1/data/radar_enhancement/hres/conv_approach/tfrecords'
trn_path = data_path + '/train_set'
trn_files = sorted(glob.glob(trn_path + '/*'))
trn_raw_dataset = tf.data.TFRecordDataset(trn_files)
trn_raw_dataset = trn_raw_dataset.shuffle(buffer_size=shuffle_buffer)
trn_dataset = trn_raw_dataset.map(map_fn_rain_ammount)
trn_dataset = trn_dataset.batch(batch_size=batch_size, drop_remainder=True)
vld_path = data_path + '/validation_set'
vld_files = sorted(glob.glob(vld_path + '/*'))
vld_raw_dataset = tf.data.TFRecordDataset(vld_files)
vld_raw_dataset = vld_raw_dataset.shuffle(buffer_size=shuffle_buffer)
vld_dataset = vld_raw_dataset.map(map_fn_rain_ammount)
vld_dataset = vld_dataset.batch(batch_size=batch_size, drop_remainder=True)
optimizer = tf.optimizers.Adam(learning_rate=learning_rate)
loss = tf.keras.losses.MeanSquaredLogarithmicError()
## Model
model = tf.keras.Sequential(name='model')
model.add(tf.keras.layers.InputLayer(input_shape=(36,36,143)))
model.add(tf.keras.layers.MaxPool2D(2))
model.add(tf.keras.layers.Conv2DTranspose(32, kernel_size=(5,5), strides=2, padding='same', activation='relu'))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Conv2DTranspose(16, kernel_size=(5,5), strides=2, padding='same', activation='relu'))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Conv2D(1, kernel_size=(5,5), strides=1, padding='same', activation='relu'))
model.compile(optimizer, loss=loss)
## Train the model
train_history = model.fit(trn_dataset, epochs=epochs, verbose=0, validation_data=vld_dataset)
## Plot loss functions
fig, axs = plt.subplots(nrows=1, ncols=1, figsize=(10, 5))
axs.set_ylabel('Loss')
axs.plot(train_history.history['loss'], label='loss trn', c='tab:blue', alpha=1)
axs.plot(train_history.history['val_loss'], label='loss val', c='tab:blue', alpha=.3)
axs.legend()
fig.savefig('models/model_loss_' + str(my_rank).zfill(2) + '.png')
## Save model and results
model.save('models/model_' + str(my_rank).zfill(2) + '.h5')
json.dump(train_history.history, open('models/train_hist_' + str(my_rank).zfill(2) + '.json', 'w'))
comm.send(1, dest=p-1, tag=123)