-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathMyTest_LungInf.py
65 lines (50 loc) · 2.63 KB
/
MyTest_LungInf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# -*- coding: utf-8 -*-
"""Preview
Code for 'Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Scans'
submit to Transactions on Medical Imaging, 2020.
First Version: Created on 2020-05-13 (@author: Ge-Peng Ji)
"""
import torch
import torch.nn.functional as F
import numpy as np
import os
import argparse
from scipy import misc
from Code.model_lung_infection.InfNet_Res2Net import Inf_Net as Network
from Code.utils.dataloader_LungInf import test_dataset
def inference():
parser = argparse.ArgumentParser()
parser.add_argument('--testsize', type=int, default=352, help='testing size')
parser.add_argument('--data_path', type=str, default='./Dataset/TestingSet/LungInfection-Test/',
help='Path to test data')
parser.add_argument('--pth_path', type=str, default='./Snapshots/save_weights/Semi-Inf-Net/Semi-Inf-Net-100.pth',
help='Path to weights file. If `semi-sup`, edit it to `Semi-Inf-Net/Semi-Inf-Net-100.pth`')
parser.add_argument('--save_path', type=str, default='./Results/Lung infection segmentation/Semi-Inf-Net/',
help='Path to save the predictions. if `semi-sup`, edit it to `Semi-Inf-Net`')
opt = parser.parse_args()
print("#" * 20, "\nStart Testing (Inf-Net)\n{}\nThis code is written for 'Inf-Net: Automatic COVID-19 Lung "
"Infection Segmentation from CT Scans', 2020, TMI.\n"
"----\nPlease cite the paper if you use this code and dataset. "
"And any questions feel free to contact me "
"via E-mail (gepengai.ji@gamil.com)\n----\n".format(opt), "#" * 20)
model = Network()
# model = torch.nn.DataParallel(model, device_ids=[0, 1]) # uncomment it if you have multiply GPUs.
model.load_state_dict(torch.load(opt.pth_path, map_location={'cuda:1':'cuda:0'}))
model.cuda()
model.eval()
image_root = '{}/Imgs/'.format(opt.data_path)
# gt_root = '{}/GT/'.format(opt.data_path)
test_loader = test_dataset(image_root, opt.testsize)
os.makedirs(opt.save_path, exist_ok=True)
for i in range(test_loader.size):
image, name = test_loader.load_data()
image = image.cuda()
lateral_map_5, lateral_map_4, lateral_map_3, lateral_map_2, lateral_edge = model(image)
res = lateral_map_2
# res = F.upsample(res, size=(ori_size[1],ori_size[0]), mode='bilinear', align_corners=False)
res = res.sigmoid().data.cpu().numpy().squeeze()
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
misc.imsave(opt.save_path + name, res)
print('Test Done!')
if __name__ == "__main__":
inference()