-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathMyTest_MulClsLungInf_UNet.py
68 lines (55 loc) · 2.67 KB
/
MyTest_MulClsLungInf_UNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# -*- coding: utf-8 -*-
"""Preview
Code for 'Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Scans'
submit to Transactions on Medical Imaging, 2020.
First Version: Created on 2020-05-13 (@author: Ge-Peng Ji)
"""
import os
import numpy as np
from Code.utils.dataloader_MulClsLungInf_UNet import LungDataset
from torchvision import transforms
from torch.utils.data import DataLoader
from Code.model_lung_infection.InfNet_UNet import * # use U-Net for multi-class segmentation
from scipy import misc
from Code.utils.split_class import split_class
import shutil
def inference(num_classes, input_channels, snapshot_dir, save_path):
test_dataset = LungDataset(
imgs_path='./Dataset/TestingSet/MultiClassInfection-Test/Imgs/',
pseudo_path='./Results/Lung infection segmentation/Semi-Inf-Net/', # NOTES: generated from `Semi-Inf-Net`
label_path='./Dataset/TestingSet/MultiClassInfection-Test/GT/',
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])]),
is_test=True
)
test_dataloader = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=0)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
lung_model = Inf_Net_UNet(input_channels, num_classes).cuda()
print(lung_model)
lung_model.load_state_dict(torch.load(snapshot_dir))
lung_model.eval()
for index, (img, pseudo, img_mask, name) in enumerate(test_dataloader):
img = img.to(device)
pseudo = pseudo.to(device)
img_mask = img_mask.to(device)
output = lung_model(torch.cat((img, pseudo), dim=1))
output = torch.sigmoid(output) # output.shape is torch.Size([4, 2, 160, 160])
b, _, w, h = output.size()
_, _, w_gt, h_gt = img_mask.size()
# output b*n_class*h*w -- > b*h*w
pred = output.cpu().permute(0, 2, 3, 1).contiguous().view(-1, num_classes).max(1)[1].view(b, w, h).numpy().squeeze()
print('Class numbers of prediction in total:', np.unique(pred))
# pred = misc.imresize(pred, size=(w_gt, h_gt))
os.makedirs(save_path, exist_ok=True)
misc.imsave(save_path + name[0].replace('.jpg', '.png'), pred)
split_class(save_path, name[0].replace('.jpg', '.png'), w_gt, h_gt)
shutil.rmtree(save_path)
print('Test done!')
if __name__ == "__main__":
inference(num_classes=3,
input_channels=6,
snapshot_dir='./Snapshots/save_weights/Semi-Inf-Net_UNet/unet_model_200.pkl',
save_path='./Results/Multi-class lung infection segmentation/class_12/'
)